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ABSTRACT 

 
In this paper we introduce the concept of rough intuitionistic fuzzy k-mode algorithm to cluster categorical data. 

This proposal is an extension of rough fuzzy k-mode in which we have added the parameter intuitionistic degree in the 
calculation of membership values of all elements in a given cluster. The efficiency of the proposed algorithm is 
demonstrated using various popular categorical data sets from UCI data repository. Experimental analysis is performed by 
taking these data sets and several measures of efficiency like the DB index, D index, XB index, PC pair and Minkowski score 
are computed for each data set. The results invariably show that the proposed algorithm is more efficient than rough fuzzy 
k-mode algorithm.  
Keywords - Categorical data, Clustering, Data mining, rough fuzzy k-mode, rough   intuitionistic fuzzy k-mode 
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INTRODUCTION 
 

Data Mining is the computational process of finding patterns in large data sets involving various 
methods. These methods are at the intersection of artificial intelligence, machine learning, statistics, 
and database systems. The data mining process seeks to extract information from a data set and convert this 
into a comprehendible form for further use. For the extraction of valid patterns and knowledge mining from 
complex and huge amount of data set many techniques are used. Some of them are association, classification, 
clustering, pattern recognition etc. These are used to group, or classify the dataset. In this paper we focus on 
clustering algorithm for mining purposes. 

 
Clustering [8] aims to group a set of objects in such a way that objects in the same group are more 

similar to each other than to those in other groups. Hence a cluster is defined as a group of objects which are 
“similar” to each other and are “dissimilar” to the objects belonging to other clusters. Nowadays most of the 
raw data available is without any class values in which the different records can be classified or without much 
relation to each other. So, in these cases the concept of clustering comes in handy. Clustering methods are 
used to minimize the inter cluster similarity and maximize the intra cluster similarity.   

 
`Categorical data is the statistical data type consisting of variables that can take on one of a limited, and 
usually fixed, number of possible values, thus assigning each individual to a particular group or "category." The 
objects in the database contain the attributes of various data types. These values may be of either numeric or 
non-numeric type. Categorical dataset therefore generally involves nominal, ordinal and interval-scaled 
attributes. 
 

Both numerical and categorical data can be clustered. But clustering categorical data is very different 
and difficult from those of numerical data. The distance metric can’t be applied to the categorical data directly. 
So clustering algorithms which involve computation of the mean of clusters as a parameter are rendered 
ineffective when applied on categorical data. This is because they wholly depends on the distance metric and it 
can only minimize a numerical cost function. So for categorical data we have to use mode type [5] methods. 

 
The mode type approach modifies the means process for clustering categorical data by substituting 

the Euclidean distance function with the simple matching dissimilarity measure, using modes to represent 
cluster centres and updating modes with the most frequent categorical values in each of iterations of the 
clustering process. These modifications guarantee that the clustering process converges to a local minima 
result. 
 

We have used the concept of roughness in this paper. There prevails uncertainty in crisp labelling of 
data due to context dependent nature. Also, it may be difficult to differentiate distinct objects, and so one may 
find it convenient to consider granules for its handling. Granulation is a computing paradigm that is abstracted 
from natural phenomena. The structure of granulation can often be defined by employing various soft 
computing approaches like rough sets, fuzzy sets [16] or their combination. As a result, rough set approaches 
have become preferred choices across various application domains, for performing different computing tasks 
involving vagueness. Rough set theory [11] was basically developed to deal with vagueness in the data. While 
fuzzy sets deal with such data using a partial membership function, rough sets express the same by the 
boundary region of a set. A rough set is a set of objects which cannot be classified with certainty as members 
of the set or its complement using the available knowledge. Thus, associated with every rough set, there is a 
pair of precise sets known as lower approximation and upper approximation of the rough set. The basic idea is 
to separate discernible objects from indiscernible ones and to assign them to lower and upper approximations 
of the set respectively. The main advantage of rough set theory in data analysis is that it does not need any 
preliminary or additional information about data like probability distributions in statistics or a grade of 
membership in fuzzy set theory [16]. 
 

The basic rough k-mode was introduced in [12]. When the notion of fuzziness is applied to rough k-
mode we get the rough fuzzy k-mode algorithm. An algorithm to this effect was proposed and studied in [14]. 
The concept of membership function in fuzzy set helps in enhancing and evaluating overlapping clusters 
formed by using methods like k-mode. In fuzzy clustering [2][13] data elements can belong to more than one 
cluster, and associated with each element is a set of membership levels. These indicate the strength of the 

https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/Statistical_data_type
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association between that data element and a particular cluster. Hence it is a process of assigning these 
membership levels, and then using them to assign data elements to one or more clusters. 
 

It is well known that the concept of intuitionistic fuzzy sets was introduced by Atanassov [1] is a more 
general concept than that of fuzzy sets. The presence of the hesitation function controls and presents the 
uncertainty in a better way. So in this paper we will be working on the idea of rough intuitionistic fuzzy k-mode 
and also validate that it is better as compared to rough fuzzy k-mode. 
 

RELATED WORK 
 

A lot of work has been done in the field of data mining and data clustering. New methods have been 
proposed frequently as there is no fixed method of clustering data. Let us first present the history of clustering. 
In [8] an iterative technique of partitioning a dataset into C-clusters was introduced by McQueen in 1967. 
Similarly the fuzzy set theory was introduced by Lotfi A. Zadeh in [16]. Applying this concept on clustering 
Ruspini first proposed the fuzzy clustering algorithm mentioned in [13], which was later modified and 
generalized by Dunn and Bezdek respectively in [2].  In 1982 Pawlak came out with the concept of rough sets in 
[11]. The notion of rough k-means clustering was developed by Lingras in [7]. The concepts of k-mode and 
fuzzy k-mode were introduced by Z. Huang in [5] and [6] respectively. In [9] and [10], Maji and Mitra proposed 
the notion of rough-fuzzy hybrid clustering algorithm respectively. Ranga Suri and Murty formulated the 
clustering of data using rough k-mode algorithm in [12]. In [14] the rough fuzzy k-mode algorithm was 
discussed. Chaira T. formulated the intuitionistic fuzzy clustering algorithm [3], [4]. In [15] the intuitionistic 
fuzzy k-mode algorithm was presented and studied. The details of all the algorithms have been discussed in 
the forthcoming sections of the document. 
 

DATASETS USED 
 

The datasets used in this paper was taken from UCI dataset repository where various datasets are 
available for public use. The datasets used are soybean, wine and iris. The description for these datasets is 
given in the table below – 
  

Table 1: Datasets Description 
 

Data Set Soybean 
Dataset 

Wine Dataset Iris Dataset 

Characteristics Multivariate Multivariate Multivariate 

Attribute Type Categorical Real, Integer, Categorical Real, Categorical 

Associated Tasks Classification Classification Classification 

Number of 
Instances 

47 178 150 

Number of 
Attributes 

35 13 4 

Missing Values No No No 

Class Values D1,D2,D3,D4 1-3 Iris Setosa, Iris Versicolour, Iris 
Virginia 

 

NOTATION 
 

In this section we have explained the notations which have been used to give the various equations. 
The notations relating to categorical data and intuitionistic fuzzy k-mode have been provided. 
 
Categorical Data 
 

We assume that a database T stores the set of objects to be clustered defined by a set of 

attributes 1 2 mA ,  A  A . Each attribute Aj describes a domain of values denoted by DOM(Aj) and is 

associated with a defined semantic and a data type. In this letter, we only consider two general data types, 
numeric and categorical and assume other types used in database can be linked with one of these two types. 
The domains of attributes associated with these two types are called numeric and categorical, respectively. A 
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numeric domain consists of real numbers. A domain DOM(Aj) is defined as categorical if it is finite and 

unordered, e.g., for any a,b  DOM(Aj) either a=b or a b . A conjunction of attribute-value pairs logically 

represents an object X in T as follows:      1 1 2 2 m mA  x A  x . . . . A  x      , where xj  DOM(Aj)   

for 1 ≤  j ≤ m. 
 

Without ambiguity, we represent X as a vector 1 2 3[ , , ,..., ]mx x x x . X is called a categorical object if it 

has only categorical values. We consider every object has exactly m attribute values. If the value of an 

attribute Aj is missing, then we denote the attribute value of Aj by null. Let X = { 1X , 2X ,… nX } be a set of n 

objects. Object Xi is represented as [ 1ix , 2ix ,. . . , imx ]. We write i kX X  if i, j k, jx x  for 1   j   m. The 

relation i kX X does not mean that Xi and Xk is the same object in the real world database. It means the two 

objects have equal values for the attributes 1 2 mA ;  A ;. . . . ;  A . 

 
Rough Set 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
Rough set [11] was first described by a Polish computer scientist Pawlak. It is a formal approximation 

of a crisp set in terms of a pair of sets which give the lower and the upper approximation of the original set. 
Let X,a subset of U, be a target set that we wish to represent using attribute subset P. The statement that an 
arbitrary set of objects X comprises a single class, and we wish to express this class using the equivalence 
classes induced by attribute subset  P. In general, X cannot be expressed exactly, because the set may include 
and exclude objects which are indistinguishable on the basis of attributes P. 
 

For example, consider the target set X={O1, O2, O3, O4}, and let attribute subset P= {P1, P2, P3, P4, P5}, 
the full available set of features. It will be noted that the set X cannot be expressed exactly, because in [x]P, 
objects {O3, O7, O10} are indiscernible. Thus, there is no way to represent any 
set X which includes O3 but excludes objects O7 and O10. 
 

However, the target set X can be approximated using only the information contained within P by 
constructing the P-lower and P-upper approximations of X: 
 
P X = {x | [x]P  X}                                                                                                                    (1) 

P’X = {x | [x]P  X ≠ φ}                                                                                                           (2)  
 
Intuitionistic Fuzzy Set 

 

The notion of intuitionistic fuzzy sets introduced by Atanassov [1] emerges from simultaneous 
consideration of membership values m and non-membership values n of elements of a set. An IFS A in X is 

Fig 1: Lower and Upper Approximations of Rough set 

Upper 

Approximation 

An example of 

rough set 

Lower 

Approximation 

Universe 

Granules 
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given as     A A{ x,  m x ,  n x |  x X} , where  Am : 0,1X  and : [0,1]An X   such that 

   A A0  m x   n x  1    where x X  .  Am x  and An (x) are  membership and non-membership 

values of an element x to set A in X. Set A becomes a fuzzy set when     A An x   1  m x   for every x in 

set A. For all IFSs, Atanassov also indicated an intuitionistic degree,  A x . This arises due to lack of 

knowledge in defining membership degree, for each element x in A and this is given as 

 

       A A A Ax    1  m x   n x  ,  0  x   1                                                                     (3)                 

  

Membership values  Am x  lie in an interval range        A A A Am x  x ,  m x  x      due to 

hesitation degree.Construction of Intuitionistic Fuzzy Set (IFS) is done from intuitionistic fuzzy generator (IFG). 
In this study, Sugeno’s IFG is used. Sugeno’s intuitionistic fuzzy complement is written as 

 

             N m x   1  m x  /  1   m x  0,  N 1   0,  N 0  1                                 (4)       

                   
Sugeno type intuitionistic fuzzy complement N(m(x)) is used to calculate non-membership values. With Sugeno 
type fuzzy complement, the hesitation degree is given by   
 

         A A A Ax    1  m x   1  m x  /  1   m x      .                                                    (5)   

 
METHODS AND ALGORITHMS 

 
Rough K-modes algorithm 
 

The membership of the given objects in their clusters is determined by using k-modes algorithm [5]. 
According to it the objects were repeatedly assigned to different clusters and the cluster centres were also 
determined in the clusters. By taking into account rough feature with this we take care of the boundary values 
and also clearly define what is vague and the uncertainty.  

 

Given a categorical data set D with n objects, the objective is to produce k rough clusters 

 1 2U , U , . . . , Uk represented by their modes  1 2Z , Z , . . .,  Zk respectively. Let D= { 1X , 2X ,… nX } 

be the input data set consisting of n data objects, described using m categorical attributes. Each data object Xi 

is represented as an m-dimensional vector { 1ix , 2ix ,. . . , imx }.Let freq(xi,r) denote the number of objects in D 

with the value xi,r for the rth attribute. 
 

Similarly, let  ,xlow

j i rfreq and  ,xup

j i rfreq  denote the number of objects in the lower and upper 

approximations of jth cluster respectively with the value xi,r for the rth attribute. Let d(Zj,Xi) be the distance 
between a categorical data object Xi and a cluster Cj (with its mode Zj) during the clustering process. Then, a 
possible way to compute this distance value between two object X and Y is by using the dissimilarity measure 
is given below: 
 

  j j

1

d X,Y    (x , y )
m

j




                                                (6) 

where 
 

0, ;
( , )

1, .

j j

j j

j j

x y
x y

x y



 


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The lower and upper approximations are weighted differently. Since the objects in the lower 
approximation completely belong to the cluster, therefore they are assigned a greater weight denoted by 

. The objects in the upper approximation as assigned a relatively lower weight denoted by  where 

. The algorithm for is given as follows: 

 
1. Assign initial mode  for c clusters. 
2. Let  be the minimum and  be the next to minimum distance of  from clusters  and . 

Assign each data object to the lower or upper approximation by computing . 

3. If  is less than threshold ( ) then 

 and  and is not the member of any lower approximation. 

else    

4. Count cluster-wise attribute value frequencies ,( )low

j i rfreq x  and ,( )low

j i rfreq x , for every xi,r  . 

5. Calculate new centroids for each cluster using. 
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(7) 
 

6. Repeat from step 2 until there are no more assignment  
 
Rough Fuzzy K-modes algorithm 
 

Rough Fuzzy K-Mode [14] is an algorithm proposed by Saha, Maulik and Sarkar; it combines the 
concepts of rough set theory [11] and fuzzy set theory [16]. It is an extension of rough fuzzy C-means [9][10]. 
The concepts of lower and upper approximations in rough set deals with uncertainty, vagueness and 
incompleteness whereas the concept of membership function in fuzzy set helps in enhancing and evaluating 
overlapping clusters.  

 
1. Assign initial mode  for c clusters. 
2. Compute  using 

 

 
         (8) 

 
3. Let  and  be the maximum and next to maximum membership values of object  to cluster 

centroids  and . 

 
If  then 
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and  and  cannot be a member of any lower approximation. 

Else  

 
                   

4. Calculate new cluster mode by using 
              

The mode is updated in such a way that vi,j = ar
j  DOM(Aj). 

 

                            

_

_

1

, ;

arg max , ;

, .
j

low low up up i i

low i i
t q

up

w L w L if BU and BU

r L if BU and BU

L else
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 


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
    




  




                (9)   

                  where, 
 

                                     

,

1 ,
,
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t
i j j
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L 


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


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5. Repeat from step 2 until termination condition is met or until there are no more assignment of 

objects. 
 
Rough Intuitionistic Fuzzy K-modes algorithm 
 

We propose a new k-mode algorithm that brings together all the concepts that have been discussed 
earlier. The rough intuitionistic fuzzy k-mode (RIFKM) uses the concept of rough sets, fuzzy sets and as well as 
intuitionistic fuzzy sets, thereby making it a perfect combination of IFKM [15] and RKM [12]. It can also be 
considered to be RFKM [14] with IFS[1], hence adding the concept of lower and upper approximation of rough 
set, fuzzy membership of fuzzy set, non-membership and hesitation value of intuitionistic fuzzy set. It provides 
a holistic and all-round approach to clustering of data as it deals with uncertainty, vagueness, incompleteness 
which, enables the efficient handling of overlapping partitions and improves accuracy. 

 
In RIFKM, each cluster can be identified by three properties, a centroid, a crisp lower approximation 

and an intuitionistic fuzzy boundary. If an object belongs in the lower approximation of a cluster then its 
corresponding membership value is 1 and hesitation value is 0. The objects in the lower region have same 
influence on the corresponding cluster. If an object belongs in the boundary of one cluster then it possibly 
belongs to that cluster and potentially belongs to another cluster. Hence the objects in the boundary region 
have different influence on the cluster. Thus we can say that in RIFKM the membership value of objects in 
lower region is unity  and for those in boundary region behave like IFKM [15]. 

 
The steps that are to be followed in this algorithm are as given below- 
 

1. Assign initial mode  for c clusters by choosing any random c objects as cluster. 

2. Calculate  using equation (6). 

 
3. Compute  matrix 

If  then 

 
Else compute  using (8). 

 

4. Compute  
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                                                                        (10) 

 
5. Compute  and normalize 

                                                                                                           (11)  

 
6. Let  and  be the maximum and next to maximum membership values of object  to cluster 

centroids  and . 

If  then 

and  and  cannot be a member of any lower approximation. 

Else  

 
7. Calculate new cluster means by using (9) and substituting uli by uli’. 

 
8. Repeat from step 2 until termination condition is met or until there are no more assignment of 

objects. 

 
            

Fig 2: Venn diagram showing combination of theories 

 
1. MEASURING INDICES 

 
The Davis-Bouldin (DB) and Dunn (D) indexes are one of the most basic performance analysis indexes. 

They help in evaluating the efficiency of clustering. Also we have calculated the overall accuracy of clustering. 
The results are dependent on the number of clusters one requires. 

 
Davis-Bouldin (DB) Index 

 
The DB index is defined as the ratio of sum of within-cluster distance to between-cluster distance. It is 

formulated as given. 
 

                                                          (12) 

 
The aim of this index is to minimize the within cluster distance and maximize the between cluster 

separation. Therefore a good clustering procedure should give value of DB index as low as possible. 
 
Dunn (D) Index 

 
The D index is similar to DB index. It is used for the identification of clusters that are compact and 

separated. It is computed by using 
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                                     (13) 

 
Maximizing the between-cluster distance and minimizing the within-cluster distance is its aim. Hence 

a greater value for the D index proves to be more efficient. 
 
Minkowski Score 

 
Minkowski score for a set of n elements is a clustering solution. It can be represented by an n × n 

matrix C, where Ci,j = 1 or 0 depending on whether point i and j are in the same cluster according to the 
solution. The Minkowski score (MS) where clustering result is C with reference to T, which is the matrix 
corresponding to the true clustering, is defined as 

 

( , )
T C

MS T C
T


                                                                                                                                            (14) 

 

where  ,i ji j
T T   .                                                                                                                             (15) 

 
Between the two matrices the Minkowski score is the normalized distance. Lower Minkowski score 

implies better clustering solution, and a perfect solution will have a score zero. 
 
Percentage of Correct Pair 
 
Percentage of Correct Pair (%CP)  is given as below 
 
CP = number of pairs correctly clustered into the same cluster/ pairs actually in the same cluster                                                                                                                                     
(16) 

 
Higher value of CP signifies the better clustering result. It gives the result in percentage form. 

Therefore, 100% means perfect clustering. 
 
Xie-Beni Index 

 

Xie-Beni (XB) index is the ratio of the total fuzzy cluster variance ( ) to the minimum separation ( ) 

of the clusters. XB can be defined as below. 
 

XB = 
n




         Here total number of data objects is n                                                          (17) 

 
Where 
 

2

,

1 1

( ) ( )
k n

li l i

l i

D v x 
 

                                                                                                                                    (18) 

 
 
and 
 

 ,min ( )h l
h l

D v v


                                                                                                                                               (19) 

 
The dissimilarity measure between cluster mode vl and object xi  is D(vl, xi). 
Lower value of XB gives better clustering result. 
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Clustering Accuracy 
 
A clustering result can be measured by the clustering accuracy defined as: 

1

k

l

l

a

r
n




                                                                                                                                      (20) 

where ia is the number of instances occurring in both cluster l and its corresponding class and n was 

the number of instances in the data set. In our numerical tests k is the number of clusters. Hence a greater 
value of the accuracy means the given method is much better. 

 
RESULTS AND ANALYSIS 

 
To evaluate the performance and efficiency of the rough intuitionistic fuzzy k-modes algorithm and 

compare it with the rough fuzzy k-modes algorithm we carried out several tests of these algorithms.  
 

The datasets used were the soybean dataset, iris dataset and wine dataset. We have taken all the 
three datasets directly from UCI repository. We have not made any changes to the datasets like removing 
some redundant rows, cleaning the data or removing some attributes.  We chose these datasets to test these 
algorithms because all attributes of the datasets can be treated as categorical.  
 

For the dataset we used the two clustering algorithms to cluster it. For the rough intuitionistic fuzzy k-
modes algorithm we specified λ= 2. wlow and wup are assigned the values 0.7 and 0.3 respectively.   is taken as 
1.1.  

 

If the maximum was not unique, then Xi was assigned to the cluster of first achieving the maximum. 
We have taken 4, 3 and 3 as the number of clusters for soybean, iris and wine dataset respectively. The table 
below gives the modes of these clusters produced by the two algorithms. The modes obtained with the two 
algorithms are not identical. This indicates that the rough intuitionistic fuzzy k-modes and rough fuzzy k-modes 
algorithms indeed produce different clusters. 
  
Modes of the Clusters 

 
In this section we compute the cluster centres for rough fuzzy k-mode and rough intuitionistic fuzzy k-

modes for three data sets; soybean dataset, iris dataset and wine dataset to show the superiority of rough 
intuitionistic fuzzy k-mode algorithm over the rough fuzzy k-mode algorithm. 
 
Soybean dataset  
 
Tables 2 and 3 show the results obtained by using the Rough fuzzy k-mode algorithm. 

 
Table 2: Columns 1 through 22 for Rough fuzzy K-Mode 

 

Zi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 6 0 2 0 0 3 0 1 0 2 1 0 0 2 2 0 0 0 1 0 3 1 

2 6 0 0 1 1 3 3 1 1 0 1 1 0 2 2 0 0 0 1 0 0 3 

3 1 1 0 0 1 0 3 2 1 0 1 0 0 2 2 0 0 0 1 0 0 2 

4 0 1 1 1 0 2 1 2 0 1 1 0 0 2 2 0 0 0 1 1 1 1 

 
Table 3: Columns 23 through 36 for Rough fuzzy K-Mode 

 

Zi 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 1 0 1 0 0 0 4 0 0 0 0 0 0 1 

2 0 0 0 2 1 0 4 0 0 0 0 0 0 2 

3 0 0 1 2 1 3 4 0 0 0 0 0 1 4 

4 0 1 1 0 0 3 4 0 0 0 0 0 1 3 
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Tables 4 and 5 show the results for the Rough intuitionistic fuzzy k-mode algorithm. 
 

Table 4: Columns 1 through 22 for Rough intuitionistic Fuzzy K-Mode 

 

Zi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 5 0 2 1 1 3 0 2 1 0 1 1 0 2 2 0 0 0 1 0 3 1 

2 4 0 0 1 0 1 2 1 0 1 1 1 0 2 2 0 0 0 1 1 0 3 

3 3 1 2 0 0 0 3 1 0 2 1 1 0 2 2 0 0 0 1 0 1 2 

4 1 0 2 0 1 0 1 1 0 0 1 0 0 2 2 0 0 0 1 1 1 1 

1.  
Table 5: Columns 23 through 36 for Rough intuitionistic Fuzzy K-Mode 

 

Zi 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 1 1 0 0 0 0 4 0 0 0 0 0 0 1 

2 0 0 0 2 1 0 4 0 0 0 0 0 0 2 

3 0 0 0 0 0 3 4 0 0 0 0 0 1 4 

4 0 1 1 0 0 3 4 0 0 0 0 0 0 3 

 
Iris Dataset  
 

Table 6 shows the results obtained by using the Rough fuzzy k-mode algorithm and Rough 
intuitionistic fuzzy k-mode algorithm. 

 
Table 6: Columns 1 through 4 

 

 
 

 
 
 
 
 
Wine Dataset  
 

Tables 7 and 8 show the results obtained by using the Rough fuzzy k-mode algorithm and Rough 
intuitionistic Fuzzy k-mode algorithm respectively. 
 

Table 7: Columns 1 through 13 for Rough fuzzy K-mode algorithm 

                             
     Table 8: Columns 1 through 13 for Rough intuitionistic Fuzzy K-mode algorithm 

 

Zi 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 14.13 4.1 2.74 20 96 2.05 0.76 0.56 1.35 9.2 0.61 1.6 560 

2 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.7 0.64 1.74 740 

3 14.13 4.1 2.74 24.5 120. 2.05 0.76 0.56 1.35 9.2 0.61 1.6 560 

              
Performance Metrics Values  

 

Now we have calculated the DB-index, D-index, Minkowski Score, Percentage of Correct Pair and Xie-
Beni Index of the two algorithms on the three datasets. The representation for this has been made with the 
help of a table shown below and bar-graphs which clearly indicate that rough intuitionistic fuzzy k-mode is 
better than rough fuzzy k-mode. 

 Rough Fuzzy K-mode Rough Intuitionistic Fuzzy K-mode 

Zi 1 2 3 4 1 2 3 4 

1 6.3 2.5 5.7 1.9 6.7 3 5.2 2.5 

2 6.7 2.5 5 2.5 5.8 3.3 5.7 2.3 

3 6.3 2.5 5 1.9 6.7 3.1 5.7 2.2 

 Rough Intuitionistic Fuzzy K-mode 

Datasets DB D Minkowski Score % of Correct Pair Xie-Beni Index 

Soybean 1.0348 0.9231 0.2355 94.57 0.507 

Iris 2.6394 0.75 0.3992 67.97 0.71 

Wine 9.2695 0.1538 0.25 84.65 2.6233 
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Table 9:  Performance Metrics Values for Rough Fuzzy K-mode 

 

 Rough Fuzzy K-mode 

Datasets DB D Minkowski Score % of Correct Pair Xie-Beni Index 

Soybean 2.054 0.55 0.4879 71.14 1.3104 

Iris 6.5467 0.25 0.4817 66.05 2.206 

Wine 9.3477 0.1538 0.3997 69.61 2.9849 

 
Table 10:  Performance Metrics Values for Rough Intuitionistic Fuzzy K-mode 

 

 

 
 

Fig 3: Graph of DB for Soybean Dataset                                 Fig 4: Graph of DB for Iris Dataset 
 

 
 

Fig 5: Graph of DB for Wine Dataset                                        Fig.6: Graph of D for Soybean Dataset 
 

 
 

Fig.7: Graph of D for Iris Dataset                                               Fig.8: Graph of D for Wine Dataset 
 

Zi 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 14.13 4.1 2.74 24.5 96 2.05 0.76 0.56 1.06 9.2 0.61 1.6 560 

2 13.27 4.28 2.26 20.5 95 1.59 0.69 0.52 1.35 10.2 0.59 1.74 835 

3 14.13 
 

4.1 2.74 24.5 105 2.05 0.76 0.56 
 

1.35 9.2 0.61 1.6 560 
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Fig.9: Graph of Minkowski Score for Soybean Dataset 
 

 
 

Fig.10: Graph of Minkowski Score for Iris Dataset 
 

 
 

Fig.11: Graph of Minkowski Score for Wine Dataset 
 

 
 

Fig.12: Graph of % of Correct Pair Soybean Dataset 
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Fig.13: Graph of % of Correct Pair Iris Dataset 
 

                           
 

Fig.14: Graph of % of Correct Pair Wine Dataset 
 

                            
 

Fig.15: Graph of Xie-Beni Index Soybean Dataset 
 

 
 

Fig.16: Graph of Xie-Beni Index Iris Dataset 
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Fig.17: Graph of Xie-Beni Index Iris Dataset 

                        
Accuracy 
 

Now we have calculated the accuracy of clustering of the two algorithms. The accuracies are as follows: 
 

Table 11: Accuracy of Clustering 

 
 
 

 

 
According to Table 11 the final outcome is true. The accuracy results obtained clearly justify that 

rough intuitionistic fuzzy k-mode is a much better algorithm for clustering categorical data than rough fuzzy k-
mode.  
 

CONCLUSION 
 

Categorical data have become necessary in the real-world databases. However, few efficient 
algorithms are available for clustering massive categorical data. Earlier k-mode and fuzzy k-mode algorithms 
were taken up to tackle these problems. But the issue of uncertainty and vagueness were not being addressed 
by these notions. The uncertainty prevailing in clustering is addressed by considering a soft computing 
approach based on rough sets. A novel rough clustering algorithm was designed by modifying the standard k-
modes algorithm to incorporate rough sets principles which was later extended to incorporate the 
membership function which led to the development of rough fuzzy k-mode algorithm. So in this paper we 
proposed the rough intuitionistic fuzzy k-mode method in which the intuitionistic degree was taken into effect. 
This degree leads to an uncertainty in the membership of an object in a particular cluster by a particular value. 
The complexity of the method remains linear with the additional computation required in the iterative 
elimination process. Several new measures are defined based on rough sets to evaluate the performance of 
rough–fuzzy clustering algorithms. The superior performance of the proposed rough intuitionistic fuzzy k-
modes algorithm is experimentally established on various benchmark categorical data sets. Information 
obtained from it is extremely useful in applications such as data mining in which the uncertain boundary 
objects are sometimes more interesting than objects which can be clustered with certainty. Hence, the rough 
intuitionistic fuzzy k-mode has proven to be an important enrichment to clustering approaches, particularly in 
the direction of soft computing methods. 

 
SCOPE FOR FUTURE WORK 

 

We can form better clusters by using a much better distance function. The cluster formed depends 
heavily on initial cluster we take. Thus finding a way to choose better initial cluster can lead to better cluster 
formation. Also different threshold values provides different set of cluster. So according to our application it 
can be changed for better result. The notion discussed here could be applied for the detection of any outliers 
as well. Also, one can work on establishing a formal relationship among various parameters of the proposed 
algorithm. 

 

Datasets Rough Fuzzy K-mode Rough Intuitionistic Fuzzy K-mode 

Soybean 0.3325 0.748 

Iris 0.607 0.723 

Wine 0.58 0.637 
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