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ABSTRACT 

 
In this article we study the blood flow in models of branching blood vessels. Blood is a heterogeneous 

fluid and owing to the complex composition (erythrocytes, platelets, leukocytes, plasma) and the presence of 
special rheological properties (viscosity, pseudoplasticity, thixotropy), it can be attributed to non-Newtonian 
fluids. Red blood cells, called erythrocytes, responsible for transporting oxygen to tissues; white blood cells 
(platelets) for the regulation of the coagulation system activity. All blood components tend to deform and 
orientate in the stream and gather in clusters, which introduces significant changes in the behavior of blood 
flow. In the simplest terms, blood can be considered as a suspension of blood cells in physiological solution. 
The red cells are able to accumulate in the molecular chain and modify its configuration (shape and orientation 
in the flow). In our study, the blood flow simulation is implemented using rheological viscoelastic FENE-P 
model. It predicts the properties corresponding to real biological fluid such as the anomaly of viscosity, 
variable longitudinal viscosity and the finite time of relaxation of stresses. Governing parameters of the flows 
of such fluids is the Weissenberg number We, which characterizes the ratio of viscous to elastic properties, the 
Reynolds number Re describing the ratio of inertial to viscous properties, the ability of erythrocytes to change 
their orientation in the flow, the degree of disentanglement of the chains L2 and the coefficient of retardation 
characterizing the concentration of red blood cells. This article discusses the loss of symmetry of the fluid flow 
under given values of model parameters. 
Keywords: Blood flow, the T-junction channel, the symmetry loss effect of blood flow, FENE-P rheological 
model, finite volume method 
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INTRODUCTION 
 

Human blood circulatory system is quite complex, and its operation is affected by many factors [1]. 
Malfunction of the circulatory system leads to significant negative and sometimes fatal consequences.  
Particularly vulnerable are the areas of anatomic and/or pathological narrowing or widening and vascular 
bifurcation, where the occurrence of, for example, stenosis/aneurysm leads to the impaired blood circulation 
[2]. The numerical simulation made it possible to get an idea about the flow of blood and other biological 
materials in vessels of different diameters by using a variety of fluids. The study of blood circulation both in the 
body in general and in its certain area is impossible without analyzing changes in blood rheological properties. 
For each individual case, the properties depend on many factors. For example, the blood has a viscosity 
anomalies (Fig. 1) [3].  

 

 
 

Fig. 1 –Viscosity and shear rate dependence 
 

At rest, the dynamic viscosity values   are сПа  64 , the viscosity increases during physical 
exercises, but decreases several times in diseases such as diabetes or tuberculosis [4,5]. Depending on the 
shear rate the ability to form clusters of erythrocytes changes (Fig. 2).  

 

       
 

Fig. 2 – Red blood cells aggregation depending on shear rate (from left to right - low, medium, high) 
 

The concentration of red blood cells affects the blood viscosity. During reduction in the blood flow 
rate, the red blood cells form their agglomerations, which leads to an increase in viscosity. However, a 
decrease in vessel diameter (arterioles and capillaries, which walls have no muscle fibers and cannot contract) 
leads to reduction in viscosity. This is a so-called Fahraeus Lindqvist effect.  It has  known as the red blood cells 
are oriented along the axis of the receptacle and slide in the plasma [6]. The component of the blood – plasma 
– is Newtonian (purely viscous) fluid. Despite the fact that the flows of blood and biological materials, usually 
laminar, the various adverse effects of the blood flow may experience in the vessels bifurcation  at converging 
and diverging flows.  

 
The aim of this work is to study blood flow structure in the branching element of the circulatory 

system. If We = 0.01, the chosen fluid model allows obtaining the results for the flow of the blood plasma with 
insufficient concentration of red blood cells.   
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Problem statement 
  

Human blood circulatory system contains multiple branching vessels: both large arteries and veins 
and small capillaries (Figure 3).  
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Fig. 3 – Schematic representation of the pulmonary circulation (pulmonary artery) 

 
T-shaped channel was used for the simulation of blood flow in a blood vessel (Figure 4.) with the 

following assumptions – a two-dimensional (plane) flow in the solid-wall channel is considered. Despite the 
fact that the walls of blood vessels are elastic, this elasticity is not so clear in the bifurcated area.  

 

 
 

Fig. 4 – Schematic representation of the channel 
 

Isothermal flow of non-Newtonian viscoelastic fluids is described by the equations of motion and 
continuity [8, 9, 14]:  
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A stress deviator for the Newtonian fluid will be as follows: 
 

DSS ~
2~   .                                                                                  (3) 

 
Newtonian fluid is characterized by a constant shear and extensional viscosity, as well as the lack of elastic 
properties. 
 
The general stress for the FENE-P model, in accordance with the splitting stress principle, may be written as a 
sum 
 

sp  ~~~                                                                           (4) 
 
For non-Newtonian stress component equation can be written as follows: 
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where v


 - the velocity vector; 


 - the fluid density;   - the characteristic time of stress relaxation; 
pS0    - blood viscosity at zero shear rate; 

p
 - the dynamic viscosity of non-Newtonian fluid component 

at zero shear rate; 
s

 - the dynamic viscosity of the plasma; 
p~  - non-Newtonian stress component; 

S~  - 

Newtonian stress component; 
2

3~
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 - configuration tensor, where QQ


 - a dyadic product of 

configuration vectors; 
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 - averaging over the ensemble, where 

 QPN



 - the probability that a randomly chosen chain of red blood cells has a predetermined size within the 

range of Q


 up to QdQ
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 - the deformation rate tensor, where  
T
  - the transpose 

procedure.  
 

Using the standard procedure of reduction to characteristic scales  the equations of motion are 
written in dimensionless form and contain the following dimensionless quantities (Table 1): 
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Table 1. Dimensionless parameters 
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where U  - the characteristic velocity; l  - the characteristic linear scale; eqQ
 - the red blood cell chain 

configuration vector length under equilibrium; 0Q
 - the maximum possible length of the configuration vector. 

Using the FENE-P viscoelastic fluid model the results of Newtonian fluid can be obtained. The value We = 0.01 
means poor elastic properties. The stress relaxation time λ at this value of We is 0.008 seconds. 
 
 Fig. 5 shows a mesh of the computational region. The length of the input and output parts were 
established as 10 widths for the formation of the velocity profile at the input and establishing current in the 
output. The presented grid is non-uniform with  1:300 refinement on the way to the central area.  
 

 
 

Fig. 5 – A computational domain with a superimposed grid 
 
At the channel inlet (Г1) the following conditions are set:  
 

,constV,0U 
                                            (10) 

 
At the channel outlet (Г2) the Neumann conditions are set: 
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On solid walls (Г3, Г4) the non-slip conditions:  
 

,0V,0U 
                                                      (12) 

 
Initial conditions:  
 
At the initial time within the entire flow area  
 

0V,0U 
.                                                       (13) 

 
The calculations are obtained  on non-uniform grid using the finite volumes method (FVM) [10] in the 

software package OpenFoam [11].  
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The method of finite volumes (FVM) has the property of conservativeness, that is characterized by the 
implementation of the integrated balanced ratios. In the software package OpenFoam constructing grid 
equations corresponding to the differential equation is implemented by explicit schemes [12], where Courant 
number <1 is the stability criterion, the Courant number: 
  

x

Ut
Co



 ||


 <1 is the criterion of sustainability, where Co  - the Courant number, t  - the time step, 
|U|
 - 

the flow rate passing through the boundary of the finite volume, and x  - the cell size [13]. 
  

RESULTS 
 

The common  view of blood flow behavior may be performed using the streamline patterns. Fig. 6 
shows the results of simulation of the flow of a Newtonian fluid. 
 

X

Y

Z

We= 0.01

 
 

Fig. 6 - Streamline patterns for Newtonian fluid flow 
 

For the Newtonian case the flow remains symmetrical. The flow pattern arises in cases where there is 
a lack of red blood cells.  
 

 Fig. 7a and 7b present the streamlines in the viscoelastic fluid flow for values of L2 equals to 10 or 
500.  

а.    b. 
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Fig. 7 - Streamlines for viscoelastic fluid flow 
 

From figure 7a it follows that the disentangled chain of erythrocytes L2 = 10 at We=3 predicts the 
conservation of the symmetrical shape of the fluid flow and the absence of stagnant zones near the corners. 
The formation of red blood cells accumulations leads to a narrowing of the main blood flow and the flow still 
remains symmetrical. 

 
Flow pattern at L2 = 500 and We = 3 (Fig. 7b) is significantly differ from the previous case. The 

observed effects increase in stagnant areas in the flow of fluid both before and after the corners of the 
channel and in the central part of the channel near the upper wall of the developing asymmetric form of the 
flow. Thus, there is a displacement of the point of complete inhibition of the flow (stagnation point) in the 
direction of the line of symmetry. The resulting asymmetry testifies to the ordered alignment of red blood cells 
near the upper wall of the vessel, and near the channel   bifurcation. This is due to the interaction of plasma 
flow with red blood cells. And at the same time, the changed configuration of red blood cells affects the main 
flow. Arising normal stresses affect the flow, which can lead to significant deformation of the vessel walls.  
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Fig. 8 shows the distribution of values   of pressure deviation in the cross-section y=0.82. 
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Fig. 8 – The pressure distribution in the channel branching area 
 

At the values of parameters We=3; L2=500 the emerging distribution shows two areas of increased 

pressure (near the corners x=0.8 and 0.88) and a decline between it. At the distance 
3

 of the channel widths 
the pressure decreases by 2 times away from the line of symmetry towards the outlet cross-sections. 

 
Insufficient amount of erythrocytes (We=0.01) in the blood flow leads to that the entire central 

channel region has an elevated pressure with the increasing values   between the corner points. Such  pressure 
distribution in both cases is unfavorable. 

 
The exception is the flow pattern at We=3; L2=10, when the concentration of erythrocytes is within 

the normal range. Pressure slightly changes in channel’s bifurcation and 2 - 3 times less in comparison with the 
cases considered.  

 

Fig.9 shows a comparison of the contours of principal stress difference 21    for the cases 

We=0.01 and We=3 at L2 = 10 и 500.  
 

In accordance with optical law [11], this value characterizes the degree of optical anisotropy caused by the 
orientation of erythrocytes clusters in the flow. 
. 

а.           b.     с. 

      
 

Fig. 9 – The isolines 21  
 in the channel for a Newtonian fluid (a) and viscoelastic fluid (b, c), at We=3, 

L2=10, and We=3, L2=500, respectively 
 

For a Newtonian fluid maximum value of 21    is observed in the central zone of the channel and 

near the corner points (9а). For the value of parameter L2=10 the zone of maximum values of the principal 
stress difference is displaced to the upper wall of the vessel, in this area, the erythrocytes gather in clusters, 
however, the flow remains symmetrical (Fig. 9b). 
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At the value of the ratio L2 = 500 (Fig. 9c) the oriented clusters of red blood cells affect flow both in the central 
area, where corner points exist, and at the input of the channel where the flow is due to both the shear and 
normal stresses. With respect to the line of channel symmetry, the erythrocytes orientation is higher in the left 

part than in the right. The distribution of 21  
   and the vertical component of velocity Uy  shows that, 

indeed, the values of these parameters are slightly larger in the left part than in the right (Fig. 10a-10b). 
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Fig. 10 – Distribution of 21  
 and Uy in the horizontal cross-section y=0.75 

 
The performed distribution for both Newtonian and viscoelastic fluid (at We=3; L2=10) flows is 

symmetrical. The principal stresses difference’s value for the case of symmetry loss are 3-5 times greater than 
for We=0.01 and We=3; L2=10. A similar pattern is observed for the distribution of this quantity along the line 
of symmetry of the channel (Fig.11). 
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Fig. 11 – Principle stress difference’s distribution along the channel’s symmetry line 
 

For the Newtonian case (blood with low red cells concentration), the peak of values 21  
 is in 

the central zone.  
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For non-Newtonian fluid the "dangerous" values of model parameters are We=3; L2=500. At these 

values the symmetry loss effect exist and the jumps of the value 21  
 occur in channel’s  branching zone 

and near the upper wall of the channel. The peaks of 21  
 are much greater than in cases of the flow 

symmetry preservation. The most favorable case is when We=3; L2=10, when as the result of increase in 

21  
, the change in the stressed state of the blood leads to no damages to red blood cells. 

 
The vessel bifurcation area is an area of   special attention, where the arising stresses can lead to 

irreversible consequences (Fig. 12).  
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Fig. 12 - Distribution of shear stresses in the cross-section y=0.75 
 

For We=0.01, there are substantial shear stresses on the channel walls, which values   exceed the 
values of shear stresses   for non-Newtonian fluids by 2-3 times (Fig. 12). The case of the loss of symmetry is 
notable for that the increased values   τxy are observed in the main fluid flow and several times exceed the 
stresses on the vessel walls. Such a distribution of shear stresses can lead not only to an impaired integrity of 
the intima of the blood vessel, but also damage the red blood cells. When the concentration of red blood cells 
corresponds to normal (We=3; L2=10), the stress state of the fluid is not critical.   
 

SUMMARY 
 

 In case of insufficient number of red blood cells (We=0.01), the flow will be symmetrical for any value 
of the unwinding degree of the chain of red blood cells. 

 When We=3 and L2=10, the simulation of blood flow shows the flow narrowing and formation of 
stagnant zones. The flow stays symmetrical. In this case, the distribution of the main characteristics of 
the blood flow is the most favorable. 

 When We=3 and L2=500, when the concentration exceeds the normal amount of erythrocytes, the 
blood flow, in addition to narrowing of the main flow and the formation of stagnant zones in the 
channel bifurcation zones, will show a disordered symmetry relative to the line of symmetry. 

 
CONCLUSION 

 
This paper discusses the blood flow simulation presented as a rheological constitutive relation of 

FENE-P viscoelastic fluid in a branching blood vessel. Blood is a complex biological fluid, in which flow behavior 
depends on many factors, and even the laminar flow state can be accompanied by undesirable effects, 
including loss of blood flow symmetry. 

 
The effect of a disturbed symmetrical shape of viscoelastic fluid flow is associated with the interaction 
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of red blood cells and plasma. Changes in the flow direction lead to changes in conformation of erythrocytes 
associated with their ability to form clusters and change their orientation in the flow. This non-equilibrium 
configuration, in turn, leads to a change of normal stresses that affect the flow pattern.   

 
It has been shown that at a particular set of values of parameters We and L2 the blood flow loses its 

symmetry in a branching vessel. If we accept the value We=0.01 for blood flow, then the flow pattern will be 

symmetrical for any value of the unwinding degree of the chain of red blood cells. When We 1, the present 
numerical simulation of visco-elastic fluid flow at L2>10 showed a narrowing of the flow and the formation of 
congestive zones. Gradual increases in L2  increase the congestive zones and narrowing the main flow. When 
We=3 and L2=500, the blood flow, in addition to previously described effects, showed a disordered symmetry 
relative to the line of symmetry. Changes in the flow direction lead to changes in conformation of 
erythrocytes. This non-equilibrium configuration, in turn, leads to a change of normal stresses that affect the 
dynamics of blood flow. The present analysis in context of blood flow is a qualitative study. The detail study as 
well as comparison with clinical data will be carried out in future work.  
 

ACKNOWLEDGMENTS 
 

This work is partially performed at the expense of subsidies allocated in the framework of the state 
support of Kazan (Volga) Federal University in order to improve its competitiveness among the world's leading 
research and education centers. The author G. C. Layek acknowledges the international collaboration research 
work under UGC-SAP (DSA-I) between the Mathematics Department, The University of Burdwan, India and 
Kazan National Research Technological University, Kazan, Russia as par agreement with Prof. F. Kh. Tazyukov.  
 

REFERENCES 
 
[1] Leliuk V.G., Leliuk S.E. Ultrasonic Angiology. Publishing House: M., 2003 - 324 p. 
[2] Tazyukov F.Kh. Non-Newtonian flow of blood through a symmetric stenosed artery / Tazyukov F.Kh., 

Hassan Jafar M., Khalaf H.A., Snigerev B.A. // Russian Journal of Biomechanics – 2012 – v. 16(1) – p. 46-
57 

[3] S. Chien. Shear dependence of effective cell volume as a determinant of blood viscosity // Science – 
1970 – v. 168 – p. 977-979 

[4] G.C. Layek, S. Mukhopadhyay and Rama Subba Reddy Gorla, Unsteady viscous flow with variable 
viscosity in a vascular tube with an overlapping constriction// International Journal of Engineering 
Science -2009-V. 47,p. 649-659.  

[5] M.S. Mondal, S. Mukhopadhyay and G.C. Layek, Pulsatile flow of an incompressible, inhomogeneous 
fluid in a smoothly expanded vascular tube// Int. J. of Engineering Science -2012-V.57, p.1-10.  

[6] Goncharenko A. An unknown heart // Youth Technology - 2004. - No.9. - Pp. 18-28 
[7] E. S. Asmolov. Principles of transverse flow fractionation of microparticles in superhydrophobic 

channels /  E. S. Asmolov, A. L. Dubov, T. V. Nizkaya, A. J. C. Kuehne, O. I. Vinogradova.  // Lab on a Chip 
– 2015 – v. 15 – p. 2835-2841  

[8] Khalaf Kh.A. Nonlinear phenomena in the flow of generalized Newtonian fluid in a flat channel / Khalaf 
Kh.A., Taziukov F.Kh., Aliev K.M. // Proceedings of Academenergo - 2012. - No.1. - Pp. 44-50 

[9] Garifullin F.A. Mechanics of non-Newtonian fluids. - Kazan: Fen, 1998.- 416 p. 
[10] Haward S.J. Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: 

effects of surfactant concentration and ionic environment / Haward S.J., McKinley G.H // Phys. Rev. E – 
2012 – v.85 03150 

[11] OpenFoam User Guide, accessed 20 march 2016, <http://openfoam.com> 
[12] Paskonov V.M. Numerical simulation of heat and mass transfer / V.M. Paskonov, Polezhaev V.I., 

Chudov L.A.// Publ. house: -M.: Nauka, Chief Editorial Office of Physical and Mathematical Literature, 
1984. - 288 p. 

[13] Ozterkin A. Stability of planar stagnation flow of a highly viscoelastic fluid / Ozterkin A., Alakus B., 
McKinley G.H.// J.  Non-Newtonian Fluid Mech. – 1997 – v. 72(1) – p. 1-29. 

[14]  Garifullin F.A., Taziukov F.Kh. Rheology and rheometry. - Kazan: Idel-Press, 2013, - 384 p. 
 

http://pubs.rsc.org/en/content/articlelanding/2015/lc/c5lc00310e#!divAbstract
http://pubs.rsc.org/en/content/articlelanding/2015/lc/c5lc00310e#!divAbstract

