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ABSTRACT 

 
Cellular automaton is a computational model used for parallel language recognition, where the 

language is a pattern. This paper proposes a new mechanism to incorporate non-determinism in cellular 
automata. We compare cellular automata and the uniform family of boolean circuits due to their inherent 
parallelism. A tessellation automaton, which is used as a variant of cellular automata is simulated using a 
modified Ladner Fischer circuit. A one-way tessellation automata is defined which acts as a non-deterministic 
time varying cellular automata, which is simulated into Boolean circuits to establish a relationship between 
them. Modifications are made to the original Ladner Fischer circuit for the simulation.  
Keywords: Tessellation automata, Simulation, Ladner Fischer Circuit, Non-determinism. 
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INTRODUCTION 
 

There are different parallel computation models of which Boolean circuits and Cellular automata are 
known for massive parallelism. Cellular automaton is a collection of "colored" cells on a grid of specified shape 
that evolves through a number of discrete time steps according to a set of rules based on the states of 
neighboring cells. The rules are then applied iteratively for as many time steps as desired. In this paper, we will 
focus on one-dimensional cellular automata with the simplest communication pattern. In one-dimensional 
cellular automata [1] there are two possible states (labeled 0 and 1) and the rule to determine the state of a 
cell in the next generation depends only on the current state of the cell and its two immediate neighbors. On 
the line of cells, the information flow is either two-way or one-way, according to the connection of the cells to 
its neighbors - to both its left and right neighbors or simply to its left neighbor or right neighbor. We 
differentiate two-way cellular automata (CA) with one way cellular automata (OCA) [2], where the information 
flow is in one direction.  

 
We define tessellation automaton [3] as an infinite array of similar finite-state machines, where every 

machine can receive information directly from finite variety of neighboring machines, where every machine is 
connected to its neighbors in a uniform way throughout the array. Each machine will modify its state only at 
discrete time steps as a function of the states of the machines in the uniformly- defined finite set of 
neighboring machines. This function may be changed from time step to time step, but it is identical for each 
machine at any given time step. We only consider the one-way model of the tessellation automata, where 
each cell is communicating only to its predecessor for the simulation. OCA has properties that are not shared 
by CA. In an OCA the state sequence of cell c only depends on the initial state and the previous state at 
previous time step. The computation is of sequential nature.  

 
         We use the sequential feature to simulate One-Way tessellation Automata (OTA) by Boolean circuits. 
Ladner Fischer Circuit [4] can be used to simulate any rational transducer by using circuits of smaller depth.  
Non-determinism[5] is introduced in cellular automata, to increase the computational power of cellular 
automata by providing multiple transitions from every state at each time step. The transitions can be selected 
based on various parameters[6], at each time configurations. Nondeterministic cellular automata exhibit more 
computational power[7] as a language recognizer.  
 

A non-uniform alternating cellular automata (ACA) [8] is time equivalent to circuit families[9]. A 
relationship exists between unbounded fan-in circuit family and non-uniform cellular automata. Also a relation 
exists between uniform ACA and constant fan-in family of circuits. 

 

MATERIALS AND METHODS 

 
DEFINITIONS 

 
A tessellation automata is defined as a four tuple(S, #,F, δnd),where S is the finite set of states and m  

S, F is the accepting state(s),# is the quiescent state with a quiescent property of δ( #,#)= # and δnd is a 
nondeterministic transition function which takes parameters as input symbols.  

 
  δnd(u1,u2)2m, where u is the input symbol which is represented as states. The states are stored as 

machines when compared to Cellular Automata where states are cells. Details of Tessellation Automata are 
extensively [7]. Tessellation automata are a perfect example which can be used as a machine model that can 
be converted to Boolean circuit model. The nature of tessellation automata is similar to the act of multiplexer 
and we can combine these ideas to simulate non determinism in Boolean circuits. 
 
PROPOSED METHODOLOGY 

 
We propose a One-way tessellation automata simulation in a modified Ladner Fischer Circuit with the 

help of the circuit in Fig. 2. The layered approach4 from has been used to simulate multiple machines in 
Boolean circuits. We found out that a polynomial time simulation is possible from Boolean circuit to equivalent 
cellular automata. So there exists a relationship between Boolean circuits and cellular automata. 
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A one-way tessellation automaton (OTA) is a one-dimensional array of identical finite automata 
(machines) numbered 1, 2, etc. from left to right, and working synchronously at discrete time steps. Each 
machine depends on its left neighbor and takes on a value from a finite set S, the set of states. At every step, 
the state of each cell is computed according to a transition function δnd which is selected from a set of 
transition functions  

 
δnd = {δ1, δ2 ,δ3 ,δ4 } 

 
Involving its own state and the state of its left neighbor. Formally denoting <m, t > the state of the 

machine ‘m’ at time t, we have <m, t> = δnd(<m − 1, t – 1>, <m, t – 1>). Because the first machine 1 has no left 
neighbor, we use a special state ♯ not in S as a border state: <1, t> = δnd (♯, <1, t – 1>). As language recognizer, 
we have to specify two subsets of S: the input alphabet Σ and the set of accepting states Saccept. The input 

mode is parallel. At initial time 1, the ith bit of the input word k = x1 ···xn is fed to the cell i: < i, 1> = xi. The 

output machine where the result of the computation is displayed, is the machine numbered by |w| the size of 
the input. That is the first machine which can get all the information of the input k. An OTA accepts a word k, if 
on input k the output machine enters an accepting state at some time t. Let f be a function from N into N. An 
OTA accepts a language L in time f, if it accepts exactly the words k ∈ L of length |k| at time t ≤f(|k|).  
 

Let us emphasize how each cell c of an OTA (S, δnd) behaves as a finite transducer. This finite 
transducer constitutes the set of states, the input alphabet as well as the output alphabet is S, the transition 
function as well as the output function is δnd and the initial state is <m,1> the state of the machine m at initial 
time 1. On input word <m − 1,1>···<m − 1,t>, the machine m starting in state <m , 1>, successively (enters in 
states and) outputs symbols <m , 2>… <m , t + 1>. Besides, we can interpret the partial runs of the cell using 

the maps δu defined as follows. For any u = u1 ···un ∈ S∗, the map δu : S → S is obtained by applying the 

transition function δ on the successive symbols of u: δu(s) = δ(un, δ(un−1, . . . , δ(u2, δ(u1, s)) …)). Observe that 

these t of these maps F = {δu: u ∈S∗} is finite, as S is finite. The behavior of the OTA (S, δnd) can be expressed in 

terms of these maps δu. Let u = <m − 1,t1><m − 1,t1 + 1>···<m − 1,t2 – 1> be the states sequence of the 

machine m − 1 at consecutive steps t1, t1+1,...,t2−1:we have <m,t2>=δu(<m ,t1>).  

 

 
 

Fig. 1 . State sequence diagram 
 

Now the OTA acts as a finite transducer. The mapping can be done to Boolean Circuits now. The δnd 

function can be mapped into circuits by exploiting the non-deterministic behavior. According to the rules of 
tessellation automata. At every state of the machine the transition is selected from a set of global transitions. 
But each state of the same configuration Ci will have the same transition function. The corresponding circuit is 
shown in Fig. 2. 
 

We use four transition functions in our example of δnd. Let’s’ and ‘a’ be two states of ‘m’ and ‘m-1’ of 
time t. The transition function δnd is mapped into Boolean circuit by using four gates for the four transitions 
and then using a multiplexer for selecting anyone of the transition. Based on the values of‘s’ and ‘a’ any one of 
the four transition function can be selected at the output line of the multiplexer, ie. δn..  
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Fig. 2. δnd implementation in circuit 
 

Now as we have defined δnd. we can transform the working of a single cell into Ladner Fischer circuit.  
In, Ladner and Fischer [4] have designed a small boolean circuit to simulate any finite state transducer. This 
circuit will be the key component to realize the simulation of OTA by Boolean circuits. Precisely, this circuit can 
simulate the work of any one machine of an OTA.  
 

Let us have a look at this Ladner–Fischer circuit. See Fig. 3. In the previous section, we have stressed 
that the behavior of an OTA (S,δnd) can be expressed in terms of maps δu for u ∈ S∗. Precisely the machine m 
up to time t goes through the states <m, w> = δ<m−1,1>···<m−1,w−1>(<m, 1>) for all steps w = 2, . . . t. 
Actually, to simulate the work of the machine m up to time t, the Ladner–Fischer circuit will compute the maps 
δu for all prefixes u of <m− 1,1>···<m − 1,t – 1>. For that purpose, using a ‘‘divide and conquer’’ strategy, the 
circuit computes some intermediate values δv where v are sub words of <m−1,1>···<m−1,t−1>.In the Ladner–
Fischer circuit, each computed value δv, where v = <m−1,i>···<m−1,j>,is carried out at depth log(j + 1 − i) and 
width j. Notably, there exists at most one value computed at a given depth d and a given width w. 
Furthermore, if we mark every position (d, w) either by ‘1’ or by ‘0’ depending on whether the circuit 
computes or not a value at depth d and width w, then the circuit yields the geometry of a binary counter.  
 

The depth and the size of the Boolean circuit are of the same order than the depth and the size of the 
dependency graph. Indeed, the nodes of the dependency graph computes either from a binary representation 
of a state s ∈ S a binary representation of δs, either from two binary representations of maps δu and δv a 
binary representation of δv ◦ δu or from the binary representations of a map δu and a state s a binary 
representation of δu (s). As the set of states S and the set of maps F = {δu : u ∈ S∗} are finite, these types of 
nodes can be carried out by constant size Boolean circuits over {And, Or, Not}.  

 

 
Fig.3. Corresponding Ladner Fischer circuit 
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In the Ladner Fischer circuit model each δ computation refers to the circuit in Fig 2. These 
computations are performed at each level in Ladner Fischer circuit where the computations are performed. A 
clock is provided to all the levels so that non determinism is performed through the multiplexer. At each depth 
the transition used is the same. The transition changes only at different depths. 

 
Simulation of multiple cells can be done using the layered approach[3]. Each layer can be 

implemented in a parallel fashion. 
 

RESULTS AND DISCUSSION 
 
One-way tessellation automata are hence simulated in a modified Ladner Fischer Circuit with the help 

of the circuit in Fig 2. The layered approach from has been used to simulate multiple machines in Boolean 
circuits. We found out that a polynomial time simulation is possible from Boolean circuit to equivalent cellular 
automata. So there exists a relationship between Boolean circuits and cellular automata. 
 

APPLICATION 
 

Cellular automata are one of the best models for modeling biological cells. Biological organisms may 
contain dozens of organs composed of tissues containing massive amount of cells. Each cell may interact with 
its surrounding cells, hence treats cells as simple interacting elements. Since CA can simulate interactions of 
mass amount of cells, it can reproduce all common types of cell behavior. Using nondeterministic cellular 
automata, complex behavior of cells also can be modeled. An advantage of using CA in biology is its simplicity 
and ease of implementation. In addition CA reflects intrinsic individuality of the cells. Since CA can simulate to 
Boolean circuit, it can be shown that Boolean circuits also can be used to model biological cells. 

 
CONCLUSION 

 
We found out that a polynomial time simulation is possible from Boolean circuit to equivalent cellular 

automata. So there exists a relationship between Boolean circuits and cellular automata. Moreover the circuit 
complexity classes such as Nick’s class and cellular automata complexity classes are related. An investigation 
on both the complexity classes is considered for the future work.  
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