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ABSTRACT 

 
The stock Market volatility and its related prediction of risk factors are always challenging and bestow 

with research problems to  Financial Mathematics research community. Models are developed according to 
the scenario prevailing in the market and the markets keep changing. Intelligent tools help to the extent of 
designing computational models to address certain issues to solve the problems from time to time. This study 
aims at developing mathematical models (Parameter driven and observation driven models) for a few financial 
time series problems to forecast volatility of stock markets.  In this study, various mathematical models have 
been proposed for estimating financial volatility.  In this research work, we confine our attention to discuss (A)  
two observation models (Stock well transform & HMM) for Volatility estimation and finding the risk-return 
series and (B) three parameter driven models namely (i) Two mixed distributions to examine their suitability  
for obtaining parameters fitting the data. (ii) An intelligent technique - Support Vector Machine (SVM) with 
PCA-algorithm, Volatility of stock market can very well predicted by the above mentioned select mathematical 
models  which is a holistic and in depth understanding of usage of mathematical models in predicting stock 
market volatility / risk-return.  
Keywords:  Volatility, Hidden Markov model, Mixture distribution, Support Vector Machine, Stock well 
transform. 
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INTRODUCTION 
 

             Volatility estimation in stock market problems is still a challenging area of research in Financial 
Mathematics (also called Time series problems). A wide variety of statistical models has been proposed by 
research community to address this issue. However, this area continues to pose much more challenges in the 
stock market scenario. Hence, there is a need for constructing computational models that can predict and 
estimate volatility.  
 

The linearity in time series models  as explained in earlier literature [1]  are insufficient to represent 
time series problems related data in the closed form. So, there is a need to introduce a new class of models to 
deal with financial time series with the above features. “Observation driven” and “parameter driven models”, 
may be two broad modules for financial time series modelling. The volatility (conditional variance) in 
Observation driven model is supposed to be a function of the past observations, which results in 
heteroscedacity in the model. Observation models include – Versions of ARIMA and Markov and Hidden 
Markov Models.  Parameter driven models include - Generalized Linear ARMA, Various Versions of GARCH and 
other distribution based models. Intelligent techniques such as ANN (for classification and obtaining local 
optima), Probabilistic Neural Network, Fuzzy logic and  Genetic algorithm (for obtaining global optima for 
historical volatility) can also be used for parametric / non-parametric optimization problems in Stock market 
forecasting problems. 

 
Present Scenario       
 
                   The present day stock market level is becoming unpredictable often due to frequent changes in 
price movements, Whipsaws etc. Due to its very large size,  most of the times we need data reduction (or 
dimensionality reduction) techniques for obtaining good features for classification, prediction and estimation. 
For general time series problems, a number of data reduction techniques have been surveyed and a few 
techniques employable in the stock market scenario, their characteristics, merits and limitations are studied. 
 

STATEMENT OF PROBLEM 
 

Many uncertainties and interrelated economic and political factors affect stock market both locally 
and globally. The secret of successful stock market forecasting lies in acquiring better results with minimum 
input data sets. Determining the set of significant factors for predictions with full accuracy is a big  complicated 
task and hence continuous and regular stock market analysis is very essential. More specifically, the stock 
markets’ movements are analysed and predicted in order to retrieve knowledge that could guide the investors 
in terms of buying and selling timings. It also helps the investor to make money through his investment in the 
stock market. More importantly the reasons for analysing stock market movements predictions is to acquire 
more knowledge that could help the investor in terms of buying and selling timing  and to make money 
through investments in the stock market. The current study is  important milestone in predicting stock market 
from the perspective of mathematical modeling. 

 
GOALS AND OBJECTIVES 

 
Goal:  
 

 The main focus of the study is to examine the usefulness of the existing Stochastic models to classify 
the financial data by including a set of new operators and combinatorial structure of statistical distributions 
into the system of parametric and non – parametric models and to develop other associated intelligent 
techniques to enhance their capabilities in effective forecasting of stock market by considering the risk – 
return series and Volatility coefficients obtained from the data. 

 
The Objectives of the current study are: 
 
1. To utilize scale mixture distribution for extracting the features of economic factor. (model:1)      
2. To design a new Lehmann type - 1 Exponential Mixture distribution by combining Gaussian    
     and generalized exponential distributions for estimation of financial volatility.(model 2) 
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3.  Ranking volatility of various financial   investments using R – procedure. (model 3) 
4.  To build Gaussian and Laplacian HMM to train the financial data for predicting optimum   
      risk-return sequence.(model 4) 
5. To develop a combinatorial data processing tool by integrating a suitable ‘Data   Reduction    
     Technique’ with an efficient classifier.(model 5) 
6. To devise discrete stock-well transform approach for setting up extrapolation techniques for   
     Volatility prediction.(model 6) 
 

METHODOLOGY 

 
Choice of a few known Computational models 

 
      GARCH family of techniques are found to capture  mainly time varying volatility, volatility clustering, 
mean revision and asymmetric volatility with a reasonable level of accuracy. However,  to accommodate both 
local and global variations and to estimate historical volatility, implied volatility, risk – return series etc, it is 
advantageous to take up studies of HMM, structural risk minimization based techniques such as SVM, SVM 
regression classifiers with reduced dimensions of data sizes using  PCA like techniques for dimensionality 
reduction. Hence,  the following objectives have been taken up as the main subject of study in this work. 

 

Acquisition and Pre-Processing Stock Market Data 

 
The raw data obtained from the source shows much inconsistency in terms of sudden variation or 

sometimes very low variation over time. To preserve consistency, the data have been pre-processed (log data 
derivation or first difference etc) to make it well-conditioned so that the available models can be used for 
validation and comparative study purposes. The sources from where data has been derived and the model 
with which they have been tested for volatility have been described below: 
 
To carry out model based studies of various stock markets, data have been derived from various agencies from 
the following perspectives: 
 

1. Benchmark data such as S&P 500, BSE Index and DJIA etc. so as to check the efficacy of presently 
available models such as HMM, SVM – PCA etc, with some newly introduced metrics. 

2. A few Nifty data sets (pertaining to Indian stock market) and S&P 500 data to check the efficiency of 
both   available and the new mixture  distribution  based  models.  

3. A sample of TCS and CSIAC software real time data sets have been taken up for study for analysing the 
efficiency of mixed distribution fitting to obtain volatility estimates through their parameters. 
 

EXPLANATION OF MATHEMATICAL MODELS IN PREDICTING VOLATILITY 
 
 The study  objectives have been validated by the following mathematical approaches and the 

conceptual model has been given in the following figure 1 
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Volatility as a function of economic factor (model:1)   
    

            Movements in the stock market can have a profound economic impact on the economy and people. 
Volatility plays an important role in risk measurement and management. Though volatility is related to risk, it is 
not exactly the same. Risk shows undesirable outcome, but volatility measures positive outcome.  Volatility is 
measured by using the variance between returns or by standard deviation from that same security or market 
index. Normal distribution of returns is symmetrical and it estimate the potential gains or losses related to 
each amount. Thus, historical volatility is used as a risk indicator. Returns are usually calculated from market 
close-close price changes. 
 

Mixtures of normal distributions are well recognized in empirical finance. There exists a long history 
of modeling asset returns with a mixture of normal. Mixture of Normal distributions is proposed to 
accommodate the non-normality and asymmetry characteristics of financial time series data as found in the 
distribution of monthly rates of return.  

 
Stock return volatility is fundamental to finance. Volatility often plays a crucial role in measuring the 

total risk of financial assets, evaluating option prices and conducting hedging strategies.[2-5] . Owing to the 
seminal works of Engle[6] and Bollerslev[7] about heteroskedastic return series models, it has become widely 
recognized in the academic finance literature that ARCH family are effective methods for volatility forecasting 
[8,9]. Poon and Granger [10]  indicate in forecasting volatility in financial markets that times series volatility 
forecasting models can be explained by standard deviations, the SV model and ARCH and GARCH models. 
Empirical findings from studies conclude that GARCH is a more parsimonious model than ARCH, and GARCH (1, 
1) is the most popular model for examining financial time series.  

 
In this study, the volatility is predicted as a function of the economic factor, the mean economic ratio 

for a particular time period.  There are many volatility models and forecasting methods. Some of these are 
Historical volatility models, implied volatility models, Autoregressive Conditional Heteroskedasticity models 
and models based on Artificial Neural Network. All these models are direct models. In these models, the 
influence of economic factors like price level uncertainty, the riskless rate of interest, the equity risk premium 
and the ratio of expected profit to expected revenue for the economy are not taken into account The main 
economic factor considered is the ratio of expected revenue to expected profit. 
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The scale mixture of Gaussian distribution [11] is used for modeling the stock return data.  The 

volatility σ, a parameter of the normal distribution, is considered as a random variable z, which is the ratio of 
expected revenue to expected profit. Economic ratio z is assumed to follow the exponential distribution. The 
resultant distribution is fitted to Dow Jones Industrial Average (DJIA) data and Nifty50 data by estimating the 
parameters. It is observed that the scale mixture distribution is a better fit than that of GARCH for financial 
return series, whenever the volatility parameter is assumed to be  a function of one of the economic factors, 
namely the ratio of expected profit to expected revenue. It is observed that there is a decrease in volatility, 
when there is an increase in the mean ratio of expected revenue to expected profit.[12] 

 
Lehmann Type I Exponential Mixture Distribution for Volatility Estimation (model 2) 

 
A new three-parameter family of  mixture distribution is obtained by mixing  Gaussian and Lehmann 

Type I Exponential distribution on (0,∞). [13,14] . 
 
The probability density function (pdf) of the newly type of Lehmann Type I Exponential   Mixture   

Distribution (LEMD) has been derived to be 
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where the shape parameter  α > 0 is an integer.  λ > 0 is the scale  parameter and  - ∞ < μ < ∞ is the location 
parameter. The shape parameter  α  controls the skewness and kurtosis of the distribution.

  

 
Properties of the distribution are studied. Survival function and hazard function are derived and the 

standard form of the distribution is obtained in this study. This distribution is fitted to the return data for 200 
days (02/01/’12 to 16/10/’12) of the TCS Index(obtained from www.yahoofinance.com). In this data, σ, the 
volatility, follows Lehmann Type I Exponential distribution. The parameters are estimated by the method of 
maximum likelihood estimation . It is proved that LEMD has the maximum log-likelihood value and minimum 
AIC value than scale mixture of Gaussians which proves that LEMD is a better fit for this financial data. 1/λ 
gives the mean economic ratio.[15] . 

 
A Ranking And Selection Approach For Volatility in  Financial Market(model 3) 

 
Gupta and Sobel  [16], gave a multiple decision approach to the problem of selecting a subset from k 

given normal populations which include the best population. The population variances are unknown and the 
population means may be known or unknown. Based on a common number of observations from each 
population, a procedure R is defined which selects and assigns rank for the unknown population variances and 
finally gives the best population with the smallest variance. In this study, ranking and selection approach of 
Shanthi S. Gupta [17] is used to select a subset of stock market populations containing the population with the 
smallest variance, i.e., volatility. 

 
            This study  concludes that the procedure R is used to rank the volatility for the DJIA , S&P 500, Oil, 
Spectrum and Mobile indices. Each population has sub populations. The sub populations are ranked according 
to their volatility and the best sub population from each population is selected. Considering the resultant sub 
populations as main populations, using R procedure, the best population in terms of minimum volatility is 
obtained. Also, the result coincides with Scale Mixture distribution and Lehmann Type I Exponential Mixture 
Distribution. On the basis of selection, a suitable proportion of investment can be decided by an investor 
according to his / her expectation. [18]  
 
Gaussian and Laplacian HMM for Financial data analysis(model 4) 

 
In recent years, a variety of forecasting methods has been formulated and put into practice for  tock 

market analysis. Hidden Markov Model (HMM), [19,20]  is extensively applied to predict stock market data. 
The stock market prediction problem is analogous to its inherent relation with time. HMM are based on a set 
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of unobserved underlying states in the midst of which transitions can occur and each state is connected with a 
set of possible observations. The stock market can also be seen in an analogous manner. The fundamental 
states which establish the behavior of stock values are usually unseen to the investor. The transitions between 
these underlying states are based on company policy decisions,  economic conditions etc. The visible effect 
which reflects these is the value of the stock. Clearly, the HMM confirms well to this real life scenario. The 
observation emission densities of the HMM, hidden states are typically modeled by means of elliptically 
contoured distributions, usually multivariate Gaussian or student’s t densities.  
 

 In this study, Bivariate Gaussian density and Bivariate Laplace densities are used as observation 
emission densities to obtain risk-return state series. 
 
                     The States 1 and 2 of the HMM are return and risk calculated from the data considered. The 

feature vectors are then clustered using k means clustering [21,22]  and minimum distance algorithm used 

by He and Kundu [23] , to obtain the state sequence, to one of the N=1, 2 states. All 80 vectors are clustered in 
an analogous way and the resultant   feature   vectors   Sj = {sjt, t = 1, 2, 3, 4, 5, 6}     for  j = 1, 2,…., 8  are 
assigned   to one of the 2 states.  Given a model λ =  (A,Π,B) and an observation sequence O ={o1, o2, ..., oT}, the 
Viterbi algorithm finds the state-optimized likelihood function and the optimal state sequence. At each 
iteration, the optimal state sequences are assigned to the observation vectors of each training sample. The 
new states are again used to estimate new model parameters. The iteration proceeds until none of the state 
assignments change at the end of the maximization. 
 

The daily closing values of S&P 500 and Nifty 50  are downloaded from www.yahoofinance.com for 
the period from 02,Jan 2009 to 31,Dec 2012 is taken for this study. 
 

It is observed that for the S&P 500 and Nifty 50 data from Jan2013—Dec 2014, the predicted risk-
return series using emission matrix of the optimum state sequence  and the parameters of  the Laplace HMM , 
return is more pronounced than risk. 

 
                 This study concludes that the observation density is assumed to be multivariate normal and 
multivariate  Laplace, two HMMs for the financial data are constructed and is observed that the Laplacian 
HMM is a better choice than the normal HMM. It is also more practical to assume Laplace in the place of 
normal because in practical situations the data cannot be symmetrical always. Thus, Laplacian HMM has a 
prominent role in financial data analysis. 
 
Principal Component Analysis based Support Vector Machine Technique for Forecasting Stock Market 
Movements(model 5) 

 
 Conditional Volatility of stock market returns is one of the major problems in time series analysis. 

Support Vector Machine (SVM)[24]   has been applied for volatility estimation of stock market data with 
limited success, the limitation being in accuracy in volatility feature predictions due to general kernel 
functions. However, Principal Component Analysis (PCA) [25]  technique yields good characteristics that 
describes  the volatility time series in terms of time varying risk estimates. 
 

PCA, used as a tool in exploratory data analysis, which describes most of the variance of data and 
which was discovered by Karl Pearson in 1901, helps us to construct predictive models. After the development 
of computers, PCA has been widely used for pattern recognition problems due to its inherent capability of 
dimensionality reduction without losing information or capturing all features to generate a feature space. 
 

In this study, especially for S&P 500 and Nifty50, BSE Index data which includes the data 
corresponding to this period (2008-2010) , three kernel functions namely linear, polynomial or radial basis 
function, Gaussian have been taken up for experimental study and prediction performance of the algorithm 
has been evaluated in terms of Normalized Mean Square Error (NMSE) and Normalized Mean Absolute Error 
(NMAE). It is observed that Gaussian kernel function is best suited for this hybrid, that minimises both NMSE 
and NMAE. 
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  Also, PCASVM combined computational model is designed to forecast the deviations of stock market 
indices in terms of risk and return components. For classification of data by PCASVM, we have used 1(return) 
and -1(risk) as targets. In the proposed model, principal component features were extracted by processing the 
covariance matrices and SVM have been used to process the PCA feature vectors for support vector 
generations. Volatility of this data has been classified in to risk and return groups. The superiority of this 
computational model driven by Gaussian kernel function has been explained with the optimized parameter C 
and the quality metrics NMSE & NMAE. In this study, SVM and PCA SVM have been taken up for volatility 
comparison in terms of the above quality metrics and Mean & Variance. As a result, PCASVM is found to be a 
better model than SVM.[26]  
 
Stock well -Transform based Stock Market data analysis for Volatility estimation (model 6) 
 

In order to address the nonlinearity in stock market data, Fast Fourier Transform (FFT) is found to be a 
useful tool that delivers real time pricing, while allowing for a realistic structure of asset returns that include 
extra kurtosis and stochastic volatility[27] . Fourier transform of the entire time series contains information 
about the spectral components in a time series for a large class of practical applications. However, this 
information is inadequate. In these circumstances, FFT does not provide an exhaustive account in finance and 
a complete time frequency resolution of financial data leading to optimal solution which can forecast the 
future stock is scarcely seen in literature. 

 
 A spectral component of such a time series is clearly time dependent. It is always desirable to have a 

joint time frequency representation (TFR). Short Time Fourier Transform (STFT) exhibits frequency based 
features in short durations which may be found suitable for local time-frequency analysis of Fourier spectra. 
Similarly, discrete wavelet transform is also a useful tool for analyzing local features of any data in both time 
and frequency windows. However S-Transform due to its combined individual advantages of STFT and 
Continuous Wavelet Transform (CWT) provides a TFR along with frequency time dependent resolution, while 
maintaining the direct relationship with time averaging with Fourier spectra. One such application that 
requires this type of relationship is forecast of stock market indices. Hence, in order to have both time and 
frequency representation of the stock market data which are non-stationary in nature, S-transform as 
proposed by Stockwell etal, [28] 1996 is applied to different economic indicators to study various cycles 
involved in the business. The S-transform is a technique that localize time frequency spectral component, 
which combines the individual advantages of STFT and CWT with a Gaussian window with width scales 
inversely and height varies linearly with the frequency. Moreover, S-transform can be considered as the phase 
correction of CWT. 

 
In this study, we have applied discrete S-transform for time series analysis of financial market, in 

order to obtain frequency based density estimates and improved volatility estimates. Gaussian kernel is 
capable of sensing the minor variations in the data. Better prediction accuracies of this transform have been 
ensured by validating the proposed approach through four financial data sets namely S&P 500, DJIA, Nifty 50 
and BSE. However, in our observations, we find that there are sideway movements in long term trends which 
are usually called ‘whipsaws’. These are reverse signals in the long term trend. In this work, such types of noisy 
whipsaws have not been identified from real trend change signals as they are of low magnitude. However, 
since they are present in the outliers they can be identified and can be subject to post processing for further 
refinement. 
 

CONCLUSION 
 
Motivated by the advantages of various model based approaches in predicting a wide variety of stock 

market data, with  accuracy the researcher suggested Hidden Markov Model as tracking approach in obtaining 
the transition probabilities from one state of return to others in terms of in-built quality metrics. The 
underlying Gaussian distribution paved the most appropriate way for estimating the chosen stock market data 
to form the kernel of the training scheme. To further conclude with authentically mixed distributions has been 
used for  analysis  to confirm suitability to form kernel functions for  stock market  data to account for 
historical nd implied volatilities based on  research papers [29-32] 
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Intelligent computational techniques such as Support Vector Machine  [33], Artificial Neural Network 
[34,35]  and Genetic Algorithms are successfully applied to financial time series problems to obtain useful 
results with a  reasonable level of accuracy. These research works have been referred to implement a classifier 
with suitable dimensionality reduction technique. 

 
Volatility of stock market can very well predicted by the above mentioned select mathematical 

models  which is a holistic and in depth understanding of usage of mathematical models in predicting stock 
market volatility / risk-return.  
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