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ABSTRACT 

 
Although a lot of literature exists on the selection of an appropriate probability distribution for daily or 

monthly rainfall, few studies have examined which probability distributions are most suitable to fit mean annual 
rainfall. The aims of this study are to select the best probability distribution to estimate mean annual rainfall 
and assess the effects of data length on the selection of a suitable probability distribution for Zimbabwe. The 
theoretical parent frequency distribution; log-logistic, lognormal and gamma distributions are fitted to mean 
annual rainfall. The performance of the fitted distributions are assessed using the goodness-of-fit tests, namely: 
relative root mean square error (RRMSE), relative mean absolute error (RMAE) and probability plot correlation 
coefficient (PPCC). Results show that the gamma distribution had more fitness with data series. However, the 
parent distribution sometimes diverges in predicting extreme maxima annual rainfall. Therefore, we compared 
the relative performance of the gamma distribution against the two-parameter exponential distribution in 
modeling extreme maxima mean annual rainfall. Results show that the two-parameter exponential distribution 
provide the best fit against all fitted distributions in all statistical periods, thereby providing a good alternative 
candidate for modelling mean annual rainfall extremes. The mean return period of mean annual rainfall amounts 
are calculated and return level of 1193mm (recorded high mean annual rainfall amount) is associated with a 
mean return period of approximately 579 years. This paper provides the first application of parent distributions 
and two-parameter exponential distribution derived from extreme value theory to mean annual rainfall from a 
drought prone country such as Zimbabwe. 
Keywords: Mean annual rainfall, Goodness-of-fit, gamma distribution, lognormal distribution, log-logistic 
distribution, two-parameter exponential distribution. 
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INTRODUCTION 
 

Dry spells of varying severities are regular occurrences in Zimbabwe usually resulting in drought.  
Drought is a calamity with severe impacts on society. It contributes to loss of crops, animals and valuable 
property. Although knowledge of rainfall patterns over an area may be used for such disaster prevention 
purposes, it is one of the most difficult meteorological parameters to study because of a lack of reliable data and 
the large variations of rainfall in space, and time. Developing methods that can give a suitable prediction of 
hydrologic events is always interesting for both hydrologists and statisticians, mainly because of its importance 
in infrastructure development, water resource management and agriculture. Knowledge of rainfall 
characteristics, its temporal and spatial distribution plays a major role in drought-prone southern Africa, where 
economies are mainly driven by rain-fed agriculture (Jury, 1996). In modelling rainfall data, hydrologists and 
statisticians face difficulties, in most cases, the available amount of data is limited (Aksoy, 2000). To improve on 
modelling rainfall processes, many researchers have been searching for physical and statistical properties of 
rainfall using observational data. One area of interest is the parent probability distribution of rainfall amount 
(Cho et al., 2004; Deka et al., 2009). Modelling rainfall data using various mathematical models has been an 
important research area in meteorology and hydrology for the past three decades. Suhaila and Jemain (2007), 
Dan’azumi et al. (2010), Husak et al. (2007), Martins and Stedinger (2000) provide most recent research on 
mathematical modelling of rainfall patterns. It is generally assumed that a hydrological variable follows a certain 
probability distribution. Many probability distributions have been considered, in many different situations. 
There are many types of parent probability distributions used to fit rainfall data. These distributions are the 
gamma distribution (Aksoy, 2000; McKee et al, 1993; Cho et al, 2004; Adiku et al, 1997; Husak et al, 2007; Stagge 
et al, 2015), lognormal distribution (Deka et al, 2009; Cho et al, 2004; Suhaila et al, 2011), the generalized 
extreme value distribution (Roth et al, 2014; Madsen et al, 1997; Bulu and Askoy, 1998; Aksoy, 2000; Coles, 
2001; Martins and Stedinger, 2000) and the log-logistic distribution (Fitzgerald, 2005; Almad et al, 1988).  

 
Modelling of rainfall data have been investigated by several authors from different regions of the world. 

Rakhecha et al. (1994) analyzed the annual extreme rainfall series from India, covering over 80-years of rainfall 
data. Koutsoyiannis and Baloutsos (2000) analyzed rainfall data from Greece. Nadarajah (2005) provided the 
application of extreme value distributions to rainfall data from West Central Florida. Sakulski et al. (2014) fitted 
the log-logistic, Singh-Maddala, lognormal, generalized extreme value, Frechet and Rayleigh distributions to 
spring, summer, autum and winter rainfall data from the Eastern Cape province, South Africa and found that the 
Singh-Maddala to be the best fitting distribution to all four seasons rainfall data. Stagge et al. (2015) fitted seven 
candidate distributions to standardized precipitation index (SPI) and standardized evapo-transpiration index 
(SPEI) for Europe and recommended the two-parameter gamma distribution for modelling SPI and generalized 
extreme value distribution for modelling SPEI. Suhaila and Jemain (2007) found the mixed Weibull distribution 
as the best fitting distribution than single distributions in modelling rainfall amounts in Peninsular Malaysia. Zin 
et al. (2009) found the generalized lambda distribution as the best fitting distribution for rainfall amounts in 
Peninsular Malaysia as well. Those results differ from the results obtained by Suhaila and Jemain (2007).  
Therefore, each kind of probability distribution has its own applicability and limitations. A regionalized study on 
the statistical modelling of annual rainfall is very much essential as the statistical models may vary according to 
the geographical locations of the area considered and the length of the rainfall data series. In this study, an 
attempt has been made to fit the gamma, lognormal, log-logistic distributions to mean annual rainfall data series 
for Zimbabwe. These distributions are referred to as parent distributions since they fit to the whole body of the 
data. However, the tail of the theoretical parent distributions sometimes diverges in the extreme minima or 
maxima rainfall region. Extreme value theory is an alternative to fit minima and maxima mean annual rainfall 
(Chikobvu and Chifurira, 2015). Berger et al., (1982) and Surman et al., (1987) showed that the two-parameter 
exponential distribution fits well to extreme weather and atmospheric data. Therefore, the purposes of this 
study are: (1) Compare the relative performance of the gamma, lognormal, log-logistic distributions and the two-
parameter exponential distributions in fitting the mean annual rainfall for Zimbabwe, (2) investigate the 
performance of the candidate distributions at 25, 50 and 75-year periods. (3) Select the most robust model using 
goodness-of-fit tests namely relative root mean square error (RRMSE), relative mean absolute error (RMAE) and 
probability plot correlation coefficient (PPCC) and (4) estimate the mean return period for specific return levels.  
The rest of the paper is organized as follows. In Section 2, we provide some background theory on the gamma, 
lognormal, log-logistic and the two-parameter exponential distributions. The data used in the study are 
described in Section 3. Section 4 presents data analysis on models fitted. Finally, Section 5 concludes this work. 
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METHODOLOGY 
 

In order to describe the rainfall pattern at a particular area, it is necessary to identify the distribution(s), 
which best fit the data. In this section, we present some background theory on four theoretical distributions, 
namely two-parameter gamma, lognormal, log-logistic and two-parameter exponential distributions fitted to 
the mean annual rainfall. The parameters are estimated by the method of maximum likelihood. This procedure 
always gives minimum variance estimate of parameters. Here, we present the distribution functions for the 
proposed candidate models. 

 
Two-parameter gamma distribution 
 
The two-parameter gamma distribution is recommended for hydrological/meteorological frequency analysis 
(Mckee et al. 1993; Hosking, 1990). The cumulative probability function of the two-parameter gamma 
distribution used in the calculation of the standardized precipitation index, a widely used drought monitoring 
tool (Tigkas et al. 2015).   The two-parameter gamma distribution is defined by the density function  
 

𝑓𝑔𝑎(𝑥) =
𝑥𝛽g−1

𝛼g
𝛽gΓ(𝛽g)

exp (−
𝑥

𝛼g
) ,   𝑥 > 0                 (1) 

 
where 𝛼g, 𝛽g > 0.  𝛼gis the scale parameter and 𝛽g is the shape parameter of the gamma distribution.  The 

quantile function of the gamma distribution has no explicit form. In this paper, we estimate the quantiles for the 
gamma distribution using the R package “fitdistrplus”.  

 
Maximum likelihood estimation for gamma distribution 
 
Under the assumption that the observed 𝑛 independent data points 𝑋1, . . . . , 𝑋𝑛 have a gamma distribution, the 
log-likelihood for the two-parameter gamma distribution is 
 

𝑙(𝛼g, 𝛽g) = (𝛽g − 1) ∑ log( 𝑋𝑖) − 𝑛log Γ(𝛽g) − 𝑛𝛽g alog(𝛼g) −
1

𝛼g
 ∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
𝑖=1            (2) 

 
The estimate of 𝛼g is found to be 

 

�̂�g =
�̅�

�̂�g
   

          
and substituting this into the log-likelihood gives 
 

𝑙(𝛼g, 𝛽g) = 𝑛(𝛽g − 1) ∑ log( 𝑋𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑛log Γ(𝛽g) − 𝑛𝛽g log(𝛼g) − 𝑛𝛽g log(�̅�)𝑛
𝑖=1 + 𝑛𝛽g log(𝛽g) − 𝑛𝛽g           

        (3) 
 

The estimate of 𝛽g is obtained by maximizing (3) via the generalized Newton algorithm. The estimate of 𝛽gis 

given by 
 

�̂�g ≈
0.5

log �̅�−log 𝑋̅̅ ̅̅ ̅̅ ̅          (4) 

 

where log �̅� > log 𝑋̅̅ ̅̅ ̅̅ ̅. 
 
Two-parameter lognormal distribution 
 

Another distribution that is commonly used to model rainfall amounts is the lognormal distribution 
(Cho et al., 2004). The lognormal distribution is similar in appearance to the gamma distribution. An assumption 
of the lognormal distribution is that the logarithms of the data are normally distributed.  The two-parameter 
lognormal distribution is defined by the density function 

 

𝑓l(𝑥) =
1

𝑥𝛽l  √2𝜋 
exp [−

(ln(𝑥)−𝛼l)2

2𝛽l
2 ], 𝑥 > 0       (5) 
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where −∞ < 𝛼l < ∞   and 𝛽l  > 0.  𝛼l and 𝛽l   are the scale and shape parameters of the lognormal density 
function, respectively. Due to a close relationship with the normal distribution, the scale parameter 𝛼l, may be 
interpreted as the mean of the logarithm of the  random variable, while the shape parameter 𝛽l  , maybe 
interpreted as the standard deviation of the logarithmically transformed variables. Modelling with the log-
normal distribution allows the use of normal-theory statistics on a logarithmic scale, and parameter estimation 
is then straightforward (Manning and Mullahy, 2001). The quantile function of the lognormal distribution is given 
by 
 
𝑄(𝐹l) = exp(𝛼l + 𝛽l  Φ

−1(𝐹𝑖))         (6) 
 

where Φ−1(. ) has a standard normal distribution with mean zero and unit variance and 𝐹𝑖, is the 𝑖th Gringorten 

plotting position given by 𝐹𝑖 =
𝑖−0.44

𝑛+0.12
. 𝑖 is the order statistics of mean annual rainfall. 

 
Maximum likelihood estimation for lognormal distribution 
 

Under the assumption that the observed 𝑛 independent data points 𝑋1, . . . . , 𝑋𝑛 have a lognormal 
distribution, the log-likelihood for the two-parameter lognormal distribution is derived by taking the product of 
the probability densities of the individual 𝑋𝑖s: 
 

𝑙(𝛼l, 𝛽l) = ln ((2𝜋𝛽l
2)−

𝑛

2 ∏ 𝑋𝑖
−1 exp [

(ln(𝑋𝑖)−𝛼l  )
2

𝛽l  
]𝑛

𝑖=1 )      (7) 

 
The estimates of 𝛼𝑙 and 𝛽𝑙 are obtained by maximising equation (7). The maximum likelihood 

parameter estimates are 
 

�̂�l =
∑ ln(𝑋𝑖)𝑛

𝑖=1

𝑛
 and 

�̂�l =
∑ (ln(𝑋𝑖)−

∑ ln(𝑋𝑖)𝑛
𝑖=1

𝑛
)

2
𝑛
𝑖=1

𝑛
 . 

 
Two-parameter log-logistic distribution 
 

The log-logistic distribution is related to the logistic distribution in the same manner as the lognormal 
distribution is related to the normal distribution. A logarithmic transformation of the logistic distribution 
generates the log-logistic distribution. The log-logistic distribution is defined by the density function  
 

𝑓ll(𝑥) =
(𝛽ll 𝛼ll⁄ )(𝑥 𝛼ll⁄ )𝛽ll−1

[1+(𝑥 𝛼ll⁄ )𝛽ll]2
, 𝑥 > 0        (8) 

 
where 𝛼ll > 0 is the scale parameter of the two-parameter exponential distribution, and 𝛽ll > 0 is the shape 
parameter of the distribution. The log-logistic distribution has different shapes: It can be strictly decreasing, 
right-skewed, or unimodal. This flexibility property enables the log-logistic distribution to fit data from many 
different fields, including engineering, economics, hydrology, and survival analysis. The quantile function of the 
log-logistic distribution is given by 
 

𝑄(𝐹ll) = 𝛼ll (
𝐹𝑖

1−𝐹𝑖
)

1

𝛽ll          (9) 

 
Maximum likelihood estimation for log-logistic distribution 
 

Under the assumption that the 𝑛  observations, denoted by 𝑋1, . . . . , 𝑋𝑛 are from a log-logistic 
distribution, the log-likelihood function is 
 

𝑙(𝛼ll, 𝛽ll) = 𝑛log(𝛽ll) − 𝑛𝛽ll log(𝛼ll) + (𝛽ll − 1) ∑ log (𝑋𝑖)𝑛
𝑖=1 − 2 ∑ log [1 + (

𝑋𝑖

𝛼ll
)

𝛽ll
]𝑛

𝑖=1      

(10) 
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The parameter estimates are obtained by differentiating the log-likelihood function with respect to 𝛼ll 
and 𝛽ll, and equating to zero. We use the R package ‘fitdistrplus’ to obtain the maximum likelihood parameter 
estimates of the gamma, lognormal and log-logistic distributions. 
 
Two-parameter exponential distribution derived from extreme value theory 
 

Extreme value theory has emerged as one of the most important statistical disciplines for 
meteorological sciences over the last 50 years (Li et al., 2015).  The two-parameter exponential distribution is 
recommended to model extreme events (Lu, 2004). A random variable 𝑋 is said to have a two-parameter 
exponential distribution (Exp(𝛼𝐸 , 𝛽𝐸)) if its probability density function is of the form 
 

𝑓e(𝑥) =
1

𝛽e
exp − (

𝑥−𝛼e

𝛽e
), −∞ < 𝑥 < ∞, 𝛽e > 0                 (11) 

 
where 𝛼e  is the location parameter and 𝛽e is the scale parameter. Berger et al. (1982) derived the two-
parameter exponential distribution, 𝐹e, from extreme value theory to represent the cumulative frequency 
distribution of maxima random variable over a specific percentile, 
 

𝐹e = 1 − exp[−𝑦]                         (12) 
 

where 𝑦 =
𝑥−𝛼𝐸

𝛽e
. The mean annual rainfall below a specific drought threshold was chosen from the complete set 

of mean annual rainfall to fit the two-parameter exponential distribution.  The estimated cumulative probability 
 �̅�e can be calculate from the maxima mean annual rainfall 𝑥 from 
 

�̂�e(𝑥𝑖) =
𝑁−𝑟+1

𝑁+1
= 𝑃𝑟                     (13) 

 
where 𝑁 is the size of the chosen minima mean annual rainfall. 𝑃𝑖  is the probability of a value that is ranked 𝑟 
out of 𝑁  values. Therefore, the relationship between the variate 𝑦 and 𝑃𝑟  is given by 
 
𝑦(𝑖) = ln(1 − 𝑃𝑟)                      (14) 
 

The estimates of 𝛼e and 𝛽e can be estimated by least-squares method since 𝑦 and 𝑥 are linearly related. 
The quantile function of the two-parameter exponential distribution is given by 
 
𝑄(𝐹e) = 𝛼e − 𝛽e ln(1 − 𝐹𝑖)                   (15) 
 
Return period 
 

In order to develop an effective early warning drought monitoring strategy, we estimate how often the 
extreme quantiles occur with a certain return level. The cumulative two-parameter exponential distribution is 
used to calculate return period as suggested by Berger et al. (1982). The return period is given by 
 

𝑅(𝑥) =  
1

[(1−𝑓)(1−𝐹e(𝑥)
                   (17) 

 
where 𝑅(𝑥𝑐) is the return period in years of the mean annual rainfall, 𝑥 and 𝑓 is the chosen specific percentile.  
 
Model adequacy and Goodness-of-fit 
 

Model adequacy was performed using the Anderson-Darling (AD) tests and we judge goodness-of-fit 
for the fitted distributions using the relative root mean squared error (RRMSE), relative mean absolute error 
(RMAE) and probability plot correlation coefficient (PPCC).  
 
Anderson-Darling test 
 

The AD test is an improvement of the Kolmogorov-Smirnov test. It gives more weight to the tails of the 
distribution (Farrel and Stewart, 2006). The AD statistic is defined as 
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𝑊𝑛
2 = 𝑛 ∫ [𝐹𝑛(𝑥)−𝐹∗(𝑥)]2𝜓(𝐹∗(𝑥))𝑑𝐹∗(𝑥)

∞

−∞
                       (16) 

 
where  𝜓 is a nonnegative weight function which can be computed from  
 

𝜓 = [𝐹∗(𝑥)(1 − 𝐹∗(𝑥))]−1 
 

In order to make the computation of the statistic easier, Arshad et al. (2003) redefined the KS statistic 
as 
 

𝑊𝑛
2 = −𝑛 −

1

𝑛
∑ (2𝑖 − 1)[log 𝐹∗(𝑥𝑖) + log(1 −𝑛

𝑖=1 𝐹∗(𝑥𝑛+1−1)]              (17) 

 
where 𝐹∗(𝑥𝑖) is the cumulative distribution function of the specified distribution, 𝑥𝑖  is ordered data and 𝑛 is the 
sample size. According to Arshad et al. (2003), the AD test is the most powerful empirical distribution function 
test. Since the AD statistics is measure of the distance between the empirical and hypothesized distribution 
functions, the fitted distribution with the smallest AD statistic value will be selected as the best fitting model. 
 
Goodness-of-fit tests 
 

RRMSE and RMAE assesses the difference between the observed values and the expected values of the 
assumed distributions. The PPCC measures the correlation between the ordered values and the corresponding 
expected values of the assumed distribution. The formulae for the tests are 
 

𝑅𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

𝑥𝑖:𝑛−�̂�(𝐹𝑖)

𝑥𝑖:𝑛
)

2
𝑛
𝑖=1                    (18) 

 

𝑅𝑀𝐴𝐸 =
1

𝑛
∑ |

𝑥𝑖:𝑛−�̂�𝐹𝑖

𝑥𝑖:𝑛
|𝑛

𝑖=1                     (19) 

 

𝑃𝑃𝐶𝐶 =
∑ (𝑥𝑖:𝑛−�̅�)(�̂�(𝐹𝑖)−�̅�(𝐹))𝑛

𝑖=1

√∑ (𝑥𝑖:𝑛−�̅�)2𝑛
𝑖=1 √∑ (�̂�(𝐹𝑖)−�̅�(𝐹))2𝑛

𝑖=1

                  (20) 

 

where 𝑥𝑖:𝑛 is the observed values of the 𝑖th order statistics of a random sample of size 𝑛. �̂�(𝐹𝑖) is the estimated 

quantile value of the assumed distribution associated with the 𝑖th Gringorten plotting position, 𝐹𝑖 =
𝑖−0.44

𝑛+0.12
. 

�̅�(𝐹𝑖) and �̅� are the averages of �̂�(𝐹𝑖) and 𝑥𝑖:𝑛 respectively. The fitted distribution with the smallest values of 
the 𝑅𝑅𝑀𝑆𝐸 and 𝑅𝑀𝐴𝐸 is selected as the best fitting distribution while the distribution with the computed 𝑃𝑃𝐶𝐶 
closest to 1 indicates the best fitting distribution.  
 
DATA 
 

We use the mean annual rainfall data series for the period 1901 to 2009. The time series plot in Figure 
1 shows that the mean annual rainfall seems to be stationary. The Augmented-Dickey-Fuller test is used to 
formally test for stationarity in mean and variance. The null hypothesis is that the mean annual rainfall series is 
non-stationary and the alternative hypothesis is the mean annual rainfall series is stationary. The Augmented-
Dickey Fuller statistic is -4.378 with p-value = 0.01< 0.05 rejects the null hypothesis at 5% significance level 
implying that the mean annual rainfall data are stationary.  
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Figure 1: Time series plot of mean annual rainfall 
 

 
 
 

Table 1 presents the descriptive statistics for the mean annual rainfall data. The positive skewness and 
negative excess kurtosis clearly illustrates the non-normality of the distribution. 
 

Table 1: Descriptive statistics of mean annual rainfall 
 

No. of 
obs 

Mean Std. dev. Min Max Skewness Excess 
Kurtosis 

109 659.9312 169.2457 335.3000 1192.6000 0.4455 0.1222 

The table reports summary statistics for the mean annual rainfall for Zimbabwe. 
 

Fitting a statistical distribution usually assumes that the data are independent and identically 
distributed (i.e., randomness), with no serial correlation, and no heteroscedasticity. We tested for randomness 
using the Brock-Dechert-Scheinkman (BDS), Box and Pierce (1970) and Bartels (1982) tests. The null hypothesis 
for the tests is that the annual rainfall is independent and identically distributed (i.i.d). The corresponding p-
values based on the mean annual rainfall are given in Table 2.  

 
Table 2: p-values of the tests for randomness 

 

Test p-values 

BDS 0.3970 

Box and Pierce (1970) 0.5870 

Bartels (1982) 0.7570 

Rank 0.8500 

Cox and Stuart (1955) 0.5040 

 
We tested for no serial correlation using the Ljung-Box, the Durbin-Watson and the Godfrey-Breusch 

tests. The null hypothesis for the tests is the annual rainfall is not serially correlated. The corresponding p-values 
based on the mean annual rainfall are given in Table 3.  
 

Table 3: p-values of the tests for no serial correlation 
 

Test p-values 

Ljung-Box 0.1270 

Durbin-Watson 0.3795 

Breusch- Godfrey 0.7838 
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We tested for no heteroscedasticity using the ARCH LM and Breush-Pagan tests. The null hypothesis 
for the tests is the annual rainfall data has no presence of heteroscedasticity. The corresponding p-values based 
on the annual rainfall are given in Table 4. 

 
Table 4: p-values of the tests for no heteroscedasticity 

 

Test p-values 

ARCH LM 0.2790 

Breush-Pagan 0.1495 

 
All the tests reported in Tables 2, 3 and 4 are non-parametric in nature, i.e., no distributional assumptions 

are made about the data. The tests confirm that the mean annual rainfall data are independent and identically 
distributed, with no serial correlation and have no heteroscedasticity.  

 
RESULTS AND DISCUSSION 

 
The three parent distributions were fitted to the data described in Section 2.  Figure 2 show the c.d.f of 

three theoretical parent distributions and mean annual rainfall for Zimbabwe. 

 
Figure 2: The c.d.f. of three theoretical parent distributions and mean annual rainfall for Zimbabwe 

 
From Figure 2, the c.d.f. of the three fitted theoretical distributions seems similar to the frequency 

distribution of the data. The distribution parameters i.e. scale and shape parameters can be estimated by the 
maximum likelihood estimation procedure. The parameter estimates with their standard errors, AIC values and 
p-values of AD for the fitted distributions are shown in Table 5. 
 

Table 5: Fitted distributions, parameter estimates with standard errors in brackets 
 

Distribution �̂� �̂� AIC p-value for AD 

Gamma 0.0232 
(0.0030) 

15.2801 
(1.9752) 

1426.5270 0.2835 

Lognormal 6.4591 
(0.0249) 

0.2598 
(0.0176) 

1427.5860 0.4637 

Log-logistic 644.0337 
(16.1974) 

6.6773 
(0.5288) 

1420.9270 0.5125 

 
The p-values of the AD which are all greater than 0.05 as reported in Table 5.  Overall, the log-logistic 

distribution gives the best fit by having the least AIC and the largest p-value for the AD test. Subsequent analysis 
involves selection of the best fitting distribution out of the three candidate distributions using the goodness-of-
fit tests. Results of the goodness-of-fit tests are presented in Table 6.  
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Table 6: Outcomes of the GOF tests 
 

Distribution RRMSE RMAE PPCC 

Gamma 0.0218 0.0156 0.9970 

Log normal 0.0260 0.0200 0.9950 

Log logistic 0.0318 0.0266 0.9879 

 
The distribution that is found best at least twice out of the three goodness-of-fit tests is selected as the 

best fitting distribution. Results indicate that the gamma distribution is the best fitting parent distribution since 
it has the least RRMSE and RMAE and the highest PPCC values. We compare the relative performance of the 
fitted distributions at 25, 50 and 75 year periods. Table 7 shows the goodness-of-fit test results at different 
statistical periods. 

 
Table 7: Outcomes of the GOF tests at different statistical periods 

 

 
period 

Distribution 

Gamma Lognormal Log-logistic 

RRMSE RMAE PPCC RRMSE RMAE PPCC RRMSE RMAE PPCC 

25 0.5821 0.5147 0.2359 0.5864 0.5135 0.2317 0.6141 0.5311 0.2260 

50 0.3061 0.2718 0.9559 0.3089 0.2713 0.9389 0.3168 0.2739 0.9191 

75 0.1774 0.1545 0.9657 0.1825 0.1537 0.9500 0.1998 0.1627 0.9257 

 
From Table 7, the gamma distribution is found to be the best fitting distribution at each period, having 

the lowest RRMSE and RMAE values and the highest PPCC value which is closer to one. The results also show 
that by increasing the period the performance of the fitted distribution improves. The PPCC value is close to one 
when the period is 50 years or more. This suggests that analyzing mean annual rainfall data using parent 
distributions requires data of length at least 50 or better.  
 

Parent distributions are known to diverge in predicting high or low rainfall amounts. We fit a two-
parameter exponential and compare their relative performance against the best fitting gamma distribution. To 
fit a two-parameter exponential distribution to extreme maxima rainfall, we select a drought threshold. The 
Department of Meteorological Services of Zimbabwe determines the drought threshold value of 75% of the 
average annual rainfall of a 30-year rainfall time series obtained from aerially averaging ten rainfall stations with 
long enough rainfall data sets. We use a drought threshold value of 473mm. Rainfall amounts above 473mm are 
selected. We fit the two-parameter exponential distributions to the selected data using least-squares method 
since 𝑦(𝑖) and 𝑥 are linearly related. Figure 3 show the theoretical line of the variate, 𝑦(𝑖), and mean annual 
rainfall over the drought threshold value of 473 mm. 
 

 
 

Figure 3: The fitted theoretical line of variate and mean annual rainfall above the drought threshold value of 
473 mm by the two-parameter exponential distribution 
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The regression model result shows that the coefficient of determination is greater than 0.95 which 
indicates that the two-parameter exponential distribution can fit maxima mean annual rainfall well. The 𝐹𝑒 can 
be calculated form Equation (12). The fitted two-parameter exponential distribution is 𝐹𝑒(𝑥) = 1 −
exp[ −0.0062 (𝑥 − 538.3710)]. The goodness-of-fit tests are used to compare the relative performance of the 
two-parameter distribution against the best fitting parent distribution. Table 8 shows the goodness-of-fit tests 
for the gamma and two-parameter exponential distributions. 

 
Table 8: Outcomes of the GOF tests for gamma and two-parameter exponential distributions 

 

Distribution RRMSE RMAE PPCC 

Gamma 0.0323 0.0220 0.9887 

Two-parameter exponential 0.0136 0.0012 0.9998 

 
From Table 8, the goodness-of-fit results shows that the two-parameter exponential distribution fits 

the data better than the best fitting parent distribution, the gamma distribution. We also compare the two 
distributions at different periods. Table 9 shows the goodness-of-fit tests results at different periods. 
 

Table 9: Outcomes of the GOF tests for gamma and two-parameter exponential distributions at different 
periods 

 

 
period 

Distribution 

Gamma Two-parameter exponential 

RRMSE RMAE PPCC RRMSE RMAE PPCC 

25 0.5821 0.5147 0.2359 0.0230 0.00136 0.9892 

50 0.3061 0.2718 0.9559 0.0254 0.0124 0.9887 

75 0.1774 0.1545 0.9657 0.0262 0.0117 0.9900 

 
From Table 9, the two-parameter exponential distribution is found to be the best performing 

distribution in fitting mean annual rainfall data series at all given periods. It can also be seen that the PPCC value 
for the two-parameter exponential distribution is closer to one at all periods. This indicates that the two-
parameter exponential distribution fits the data well with even small data length. Thus, the distribution is a good 
candidate distribution for fitting and modelling extreme mean annual rainfall data regardless of the sample size 
of the data. 

 
The 𝐹𝐸   and return period of mean annual rainfall is calculated from Equations (12) and (17). For 

example, 𝐹𝐸(473 mm) = 1 − exp[−0.0062(473 − 538.3701)] =  −0.4997. The chosen data above the 
drought threshold value of 473mm corresponds to 90th percentile, i.e. 𝑓 = 0.90. Then the return period of 

473mm (drought threshold value) is 𝑅(𝑥𝑐) =
1

[(1−0.9)(1+0.4997)]
≈ 7 years, so a mean annual rainfall amount of 

473 mm is expected to return in 7 years’ time.  The maximum mean annual rainfall for Zimbabwe is 1192.6 mm 
recorded the in 1923/24 rainfall season. The mean return period associated with a return level estimate of 
1193mm is approximately 579 years. This suggests that extreme flood of this magnitude is likely to return in year 
579 period on average.  
 

CONCLUSION 
 

This study mainly investigates the relative performance of three commonly used probability 
distributions for mean annual rainfall, with the purpose of both providing recommendation in the selection of 
suitable distribution for frequency analysis of mean annual rainfall. Results show that the gamma distribution is 
the most suitable parent distribution. The worst performing is the log-logistic distribution. The performance of 
the best fitting parent distribution is compared to the performance of the two-parameter exponential 
distribution in fitting high rainfall extremes. It is found that the fitted two-parameter exponential agrees better 
with the actual data than the best fitting parent distribution at all different lengths of data outperforming the 
gamma distribution. This leads to the recommendation that the two-parameter exponential distribution is 
preferable to model mean annual rainfall. The return level estimates, which is the return level expected to be 
exceeded in a certain period of time T in years are calculated for Zimbabwe rainfall using the two-parameter 
exponential distributions. The highest mean annual rainfall amount recorded for the country is 1192.6mm. A 
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return level of 1193mm is associated with a mean return period of 579 years, on average. Although, national 
data are analysed, the results of this study can be extended to station data in Zimbabwe. The findings of this 
study provide useful information for early drought monitoring management and provides a good alternative 
candidate for modelling mean annual rainfall extremes. 
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