

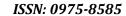
Research Journal of Pharmaceutical, Biological and Chemical Sciences

Inventory Of Native Plant Species For Urban Landscaping: An Alternative To Exotics.

Arvind Patil¹, Shital Kadam^{2*}, Suvarna S Gaikwad³.

ABSTRACT

Native plants serve as excellent alternatives to invasive species and promote a healthier environment. It is not safe for native and indigenous flora to have too many exotic species present, given their naturalization and invasiveness, particularly for The area surrounding Pune is close to the "Western Ghats," a worldwide recognized hotspot for biodiversity. The list of indigenous plants finds species that are appropriate for conservation, restoration, land management, and horticulture initiatives. The important aim of this study is preparation of list of native plant and use for landscaping an up-to-date account of native plants of Pune urban area. Native plant species were documented and photographed during 2012 to 2018. The compiled list includes 127 trees with the information on each native plant species like botanical name, local name, and family. The dominant plant families include Moraceae, Fabaceae, Rubiaceae, Combretaceae, Mimosaceae, Anacardiaceae, Caesalpiniae, Euphorbiaceae, and Sapotaceae. They can also provide ecological, historical and cultural value when incorporated into residential landscapes, a fact that has led to the emerging field of ecological landscaping.


Keywords: Native plant, Landscape ecology, Pune urban area, exotic species

*Corresponding author

¹Department of Botany, Dr. D.Y. Patil Art, Commerce and Science College, Pimpri, Pune, Maharashtra, India.

²Department of Botany, Dr. D.Y. Patil Art, Commerce and Science College, Pimpri, Pune, Maharashtra, India.

³Department of Chemistry, Dr. D.Y. Patil Unitech Art, Commerce and Science College, Tathawade, Pune, Maharashtra, India.

INTRODUCTION

Native plants possess certain qualities that make them exceptionally adapted to local conditions, providing a practical and ecologically valuable alternative for landscaping, conservation and restoration projects, and as livestock forage. They can also provide ecological, historical and cultural value when incorporated into residential landscapes, a fact that has led to the emerging field of ecological landscaping. While it is important to increase awareness of the benefits of native plants among members of the horticulture industry, home gardeners, lawmakers and developers; the educational efforts should extend to all members of the general public to create a favourable public perception and thus increase the overall demand for native plants [8]. Inappropriate plantation practices has significantly affected the original vegetation composition in Vetal hill, Pune [5].

Native plant with economic and cultural significance may decline in number rapidly. This could also create opportunities for exotic plants to spread in the areas. Such changes may affect tribes in many areas, as traditional gathering areas have experienced a decline in productivity due to anthropogenic influences of the past century and the proliferation of invasive plant species [1]. The areas occupied by the exotic weeds once vacated, the natural vegetation may return to the site and all other association problem in the ecosystem might solve [2], [3].

Landscape ecology is the field dedicated to examining and enhancing the connections between urban development and ecological processes within the environment and specific ecosystems. This examination takes place across various landscape scales, spatial development patterns, and levels of research and policy organization [9], [10]. Landscapes are defined as geographically heterogeneous areas consisting of diverse and interacting patches or ecosystems, which can include relatively natural terrestrial and aquatic systems such as forests, grasslands, and lakes, as well as human-influenced environments like agricultural and urban areas [9], [7].

There are many studies from different places around the world where it has been proved that the introduction of exotics led to decline in native species richness, diversity and abundance. The introduction of exotic is always accompanied by the possibility of that species to become invasive and once established on the new terrain it is always very difficult to eradicate them and restore the native species.

Native plants are the foundation for the local ecosystem, providing habitat and food for wildlife in a fragmented landscape [6]. Most remaining native plant communities in suburban and rural areas are highly fragmented, causing a loss of ecological function [11]. Typically, moving from countryside to city regions results in a reduction of native species diversity and numbers, while the presence of invasive species tends to rise [6], [11].

Most developed landscapes consist of a highly simplified community of a few species of exotic ornamental plants that provide little to no benefit for animals [6]. Native plantings in suburban and rural areas can serve as habitat corridors or habitat islands, increasing the structural and species diversity of human-dominated landscapes. When planted in the context of a natural plant community, native plants can mimic the structure and function of the local ecosystem, accomplishing both large scale restoration and the creation of backyard habitat pockets. They provide cover from predators and harsh weather, nesting sites and places for organisms to raise their young. Insects often survive the winter in the leaf litter left by deciduous shrubs and trees [6].

Pune has very rich biodiversity. A comparative study conducted by RANWA [4] to assess the biodiversity of major cities like Delhi, Bangalore, Mumbai and Pune also proves the superiorly of the diversity of the city in terms and numbers of species of plants, birds butterflies *etc.* Common road side avenues include *Tamarindus indica*, *Peltophorum petrocarpum*, *Ficus benghalensis*, *Ficus religiosa*, *Delonix regia*, *Bombax ceiba*, *Pongamia pinnata*, *Cassia siamea*, *Cassia renigera*, *Cassia javanica*, *Gliricidia sepium*, *etc.*

This all indicates that we have many native plant species which should be given preference in the plantation programmes. This would definitely increase the status of biodiversity and provide good habitat for a faunal composition. However, the exotic plant species like *Peltophorum pterocarpum*, *Broussonetia papyrifera*, *Leucaena*, *Gliricidia*, *Cassia siamea*, *etc.* has got performance in plantation programmes. Out of

these some are becoming invasive. This is leading to a loss of the native vegetation composition in the city.

Depending on feasibility, several other suitable measures may be employed to facilitate rapid growth of native species. In the area experiencing disturbances like deforestation, road building site, and waters and water bodies devoid of native vegetation may be given special attention to ensure regrowth of native species. Special drives to facilitate regrowth of native species may help the restoration. Designing with native plants offers significant benefits due to their adaptation to local conditions. It is essential to choose plants whose growth requirements align with the specific conditions of the planting area.

Study Area

As shown in Figure 1, the study region includes the jurisdictions of the Pimpri-Chinchwad Municipal Corporation (PCMC) and the Pune Municipal Corporation (PMC). These two municipal corporations are most ideal urban landscapes, which surrounds the natural landscapes showing the urban-natural interface. It lies between 18° 27' N to 18° 45' N and 73° 45' E to 73°58' E latitude and situated at an altitude of 530 m to 560 m and above MSL. The PCMC covers an area of 172 sq km, while the PMC occupies 146 sq km.

Geologically the entire tract is covered by basaltic flows commonly known as Deccan Trap of Cretaceous Eocene age and laterites of still younger age form conspicuous rock units.

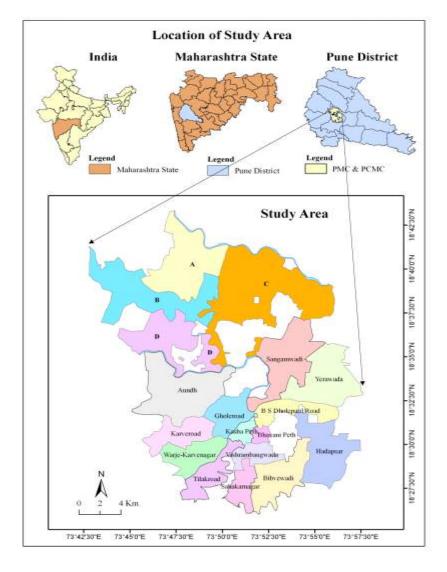


Figure 1: Study area

MATERIAL AND METHODS

Primary Data Collection

Primary data generation was done by the frequent field visit during the years 2012-2018 to the region under investigation, and eastern fringes of Western Ghats. Native plant species were documented from various locations. To help select native vegetation species, a list of suitable native plants for landscaping has been compiled. There exists a wide variety of native floral species, which can be used for landscaping, and the list attached (Table 2) suggests a few of them. Landscape architects and designers should consider using native species beyond those listed below after consulting with taxonomy experts.

Secondary Data Collection

When creating the list of native plant species, we referred to older literature for reference. The literature referred includes research paper, popular articles, notes published in journal and book, and various libraries. Discussion with experts from the field of Botany was done for secondary data collection. Secondary data on plant species distribution in the past was gathered and used to compare with present plant species and distribution. The information gathered by botanist in the past was used to assess general pattern of plant species diversity and to show how these patterns have changed over time.

RESULT AND DISCUSSION

The compiled list of native plant species (Table 2) illustrates the range of plant species that can be used for plantation at various localities. It represents 127 trees. The compiled list includes the information on each native plant species like botanical name, local name, family. Moraceae, Fabaaceae, Rubiaceae, Combrataceae, Mimosaceae, Anacardiaceae, Caesalpiniaceae, Euphorbiaceae and Sapotaceae are the dominant families (Table 2).

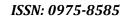
The compilation of indigenous plants highlights species that are appropriate for gardening, land stewardship, conservation efforts, and restoration initiatives. The list provides a selection of plant choices adapted to growing conditions, focusing on those native species currently available in the nursery. Using native plants in design produces distinctive natural landscapes that represent a particular geographical character, such as marshes, meadows, and forests.

Table 1: Dominant families

Family	No. of species
Moraceae	9
Fabaaceae	8
Rubiaceae	8
Combrataceae	7
Mimosaceae	7
Anacardiaceae	5
Caesalpiniaceae	5
Euphorbiaceae	5
Sapotaceae	5

Table 2: list of native plant species

Sr. no.	Botanical Name	Local Name	Family
1	Acacia catechu (L. f.) Willd	Khair	Mimosaceae
2	Acacia nilotica (L.) Willd. ex Del	Babhal	Mimosaceae
3	Acacia leucophoea (Roxb) Willd	Hivar	Mimosaceae



4	Aegle marmelos (L) Corre.	Bel	Rutaceae
5	Ailanthus exelsa Roxb.	Maharukh	Simaroubaceae
6	Alangium salvifolium (L.f.) Wangerin	Ankol	Alangianceae
7	Albizia chinensis (Osb.)Merr	Phalara	Mimosaceae
8	Albizia lebbeck (L.) Bth.	Siras	Mimosaceae
9	Albizia procera (Roxb.) Bth	Kinkal	Mimosaceae
10	Alstonia scholaris (L.) R. Br.	Satvin	Apocynaceae
11	Anogeissus acuminata (Roxb ex DC.) Guill. & Perr.	Dhankra	Combretaceae
12	Anogeissus latifolia (Roxb ex DC.) Wall. Ex Guill. & Perr.	Dhawada	Combretaceae
13	Artocarpus heterophyllus Lam.	Phanas	Moraceae
14	Azadirachta indica A. Juss	Neem	Meliaceae
15	Bauhinia faveolata Dalz.	Kanchan	Caesalpiniaceae
16	Bauhinia purpurea L.	Rakta Kanchan	Caesaliniaceae
17	Bauhinia recemosa Lam.	Apta	Caesalpiniaceae
18	Bombax ceiba L	Kate - sawar	Bombacaceae
19	Bombax insigne L	Saver	Bombacaceae
20	Borassus flabelliber L	Tad	Arecaceae
21	Boswellia serrata Roxb. ex Colebr.	Salai	Burseraceae
22	Bridelia retusa (L.) Spreng	Asana	Euphorbiaceae
23	Buchanania cochinchinesis (Lour) Almeida	Char	Anacardiaceae
24	Butea monosperma var. lutea	Pivla Palas	Fabaceae
25	Butea monosperma var. monosperma L.	Palas	Fabaceae
26	Calophyllum inophyllum L	Undi	Clusiaceae
27	Capparis grandis L.f.	Pachunda	Capparaceae
28	Careya arborea Roxb.	Kambhi	Lecythidaceae
29	Caryota urens L.	Bherali mad	Arecaceae
30	Cassine glauca (Rottb) O. Ktze	Butyakalas	Calastraceae
31	Casssia fistula L	Bava	Caesalpiniaceae
32	Cochlospermum religiosum (L.) Alst.	Ganeri	Cochlospermaceae
33	Cordia dichotoma Forst f	Bhokar	Boraginaceae
34	Crateva magna (Lour.) DC.	Varun	Capparaceae
35	Dalbergia latifolia Roxb.	Shisam	Fabaceae
36	Dalbergia sissoo Roxb	Shisam	Fabaceae
37	Dillenia indica L.	Mota-Karmal	Dilleniaceae
38	Dillenia pentagyna Roxb	Karmal	Dilleniaceae
39	Diospyros melanoxylon Roxb	Temru	Ebenaceae
40	Diospyros peregrina (Gaertn.) Guerke	Tembhurni	Ebenaceae
41	Dolichandrone falcata (Wall.ex DC.) Seem.	Medsingi	Bignoniaceae
42	Drypetes roxburghii (Wall.) Hurusawa	Putranjiva	Euphorbiaceae
43	Ehretia aspera Roxb.	Ajan	Ehratiaceae
44	Ehretia laevis Roxb.	Ajan	Ehratiaceae
45	Elaeocarpus sphaericus (Gaertn.) K. Schum.	Rudraksha	Elaeocarpaceae

46	Embelia bassal Burm	Wawding	Myrsinaceae
47	Emblica officinalisGaerttn.	Awala	Euphorbiaceae
48	Erythrina variegata L.	Pangara	Fabaaceae
49	Ficus amplissima J.E.Sm.	Pimpri	Moraceae
50	Ficus arnottiana (Miq.) Miq.	Kadakpayar	Moraceae
51	Ficus benghalensis L.	Wad	Moraceae
52	Ficus exasperata Vahl, Enum.	Kharvati	Moraceae
53	Ficus hispida L.f.	Kalaumbar	Moraceae
54	Ficus microcarpa L.f.	Nandruk	Moraceae
55	Ficus racemosa L.	Umber	Moraceae
56	Ficus religiosa L.	Pimpal	Moraceae
57	Firmina colorata (Roxb.) R.Br.	Kaushil	Sterculiaceae
58	Flacourtia latifolia (Hook.f. & Thoms.) T.Cooke	Tambat	Flacourtiaceae
59	Garcinia indica (Du Petit-Thou.) Choisy	Kokam	Clusiaceae
60	Gardenia resinifera Roth	Dikemali	Rubiaceae
61	Garuga pinnata Roxb.	Kakkad	Burseraceae
62	Gmelina arborea Roxb	Shivan	Verbenaceae
63	Grewia tiliifolia Vahl.	Dhaman	Tiliaceae
64	Haldina cordifolia (Roxb.) Ridsd.	Hedu	Rubiaceae
65	Heterophragma quadriloculare (Roxb.) K.Schum.	Varas	Bignoniaceae
66	Holarrhena pubescens (Buch - Ham) Wall. ex G. Don	Kuda	Apocynaceae
67	Holoptelea integrifolia (Roxb.) Planch.	Wavli	Ulmaceae
68	Hyphaene dichotoma (White) Furtado	Ravan tad	Arecaceae
69	Ixora brachiata Roxb.	Lokhandi	Rubiaceae
70	Kydia calycina Roxb	Warung	Malvaceae
71	Lagerstroemia microcarpa Wight	Nana-bondara	Lythraceae
72	Lagerstroemia reginae Roxb.	Tamas	Lythraceae
73	Lannea coromandelica (Houtt.) Merr.	Moya	Anacardiaceae
74	Limonia acidissima L.	Kavath	Rutaceae
75	Macaranga peltata (Roxb.) MuellArg.	Chandiva	Euphorbiaceae
76	Madhuca latifolia var. latifolia (Koen) Mac Bride	Mohva	Sapotaceae
77	Madhuca latifolia var. longifolia (Roxb.) Chev	Moha	Sapotaceae
78	Mallotus philippensis (Lam) Muell	Kumkum	Euphorbiaceae
79	Mammea surgia (BuchHam. ex Roxb) Kosterm.	Surungi	Clusiaceae
80	Mangifera india L.	Amba	Anacardiaceae
81	Manilkara hexandra (Roxb.) Dub.	Khirni	Sapotaceae
82	Melia azedarach L.	Bakan neeb	Meliaceae
83	Melia dubia Cav Diss.	Nimbara	Meliaceae
84	Memecylon umbellatum Burm. F	Anjani	Melastamaceae
85	<i>Meyna laxiflora</i> Robyns	Helu	Rubiaceae
86	Michelia champaca L.	Sonchafa	Magnoliaceae
87	Mimusops elengi L.	Bakul	Sapotaceae

88	Mitragyna parvifolia (Roxb.) Korth.	Kadam	Rubiaceae
89	Morinda pubescens J.E. Sm.	Bartondi	Rubiaceae
90	Neolamarckia cadamba (Roxb.) Bosser	Kadamb	Rubiaceae
91	Nothapodytes nimmoniana (J. Grah.) Mabberley	Amrut	Icacinaceae
92	Nyctanthes arbor- tristis L.	Parijatak	Oleaceae
93	Olea dioica Roxb.	Parjambul	Oleaceae
94	Oroxylum indicum (L.) Vent.	Tetu	Bigoniaceae
95	Ougeinia oojeinensis (Roxb.) Hochr.	Kalapalas	Fabaceae
96	Pandanus odoratissimus L.f.	Kewada	Pandanceae
97	Phoenix sylvestris (L.) Roxb.	Shindi	Arecaceae
98	Pongamia pinnata (L) Pierre	Karanj	Fabaceae
99	Pterocarpus marsupium Roxb.	Rakta-chandan	Fabaceae
100	Salix tetrasperma Roxb.	Walunj	Salicaceae
101	Santalum album L.	Chandan	Santalaceae
102	Sapindus laurifolius Vahl	Ritha	Sapindaceae
103	Schleichera oleosa (Lour.) Oken	Kusum	Sapindaceae
104	Semecarpus anacardium L.f.	Bibba	Anacardiaceae
105	Soyamida febrifuga (Roxb) A juss	Rohan	Meliaceae
106	Spondias pinnata (L.f.) Kurz	Ambada	Anacardiaceae
107	Sterculia urens Roxb.	Kandol	Sterculiaceae
108	Stereospermum colais (BuchHam. Ex Dillw.) Mabb.	Paral	Bignoniaceae
109	Strychnos nux-vomica L.	Kajra	Loganiaceae
110	Symplocos racemosa Roxb	Lenda	Symplocaceae
111	Syzygium cumini (L.) Skeels	Jambhul	Myrtaceae
112	Tamarindus indica L.	Chinch	Caesalpiniaceae
113	Tamilnadia uliginosa (Retz.) Tirveng	Pandhra	Rubiaceae
114	Terminalia bellirica (Gaetn.) Roxb.	Beheda	Combrataceae
115	Terminalia chebula Retz.	Hirda	Combrataceae
116	Terminalia cuneata Roth.	Arjun	Combrataceae
117	Terminalia paniculata L.	Kinjal	Combrataceae
118	Terminalia tomentosa L.	Ain	Combrataceae
119	Thespesia populnea (L.) Soland. ex. Corr.	ParasBhendi	Malvaceae
120	Trema orientalis (L.) Bl.	Gol	Ulmaceae
121	Vitex negundo Linn.	Nirgudi	Verbenaceae
122	Woodfordia fruticosa Kurz	Dhyati	Lythraceae
123	Wrightia arborea (Dennst.) Mabb.	Tambda kuda	Apocynaceae
124	Wrightia tinctoria R. Br.	Kala Kuda	Apocynaceae
125	Xantolis tomentosa (Roxb) Raf.	Numbal	Sapotaceae
126	Xylia xylocarpa L.	Yorul	Mimosaceae
127	Ziziphus mauritiana Lam.	Bor.	Rhamnaceae

Plate-I: Native plant species suggested as an alternative to exotics.

Plate-II: Native plant species suggested as an alternative to exotics.

ISSN: 0975-8585

REFERENCES

- [1] Bonnicksen T, Anderson, LH, Kay C, Knudson R.. Native American influences and the development of forest ecosystems. In: Johnson N., Malk A., Sexton B and Szabo W. (Editors) Ecological Stewardship: A Common Reference for Ecosystem Management. Island Press, Washington, DC. 1998. 43-57.
- [2] Holmes PM, and Cowling RM. The effects of invasion by Acacia saligna on the guild structure and regeneration capabilities of South African fynbos shrublands. 1997. Journal of Applied Ecology. 4: 317–332.
- [3] Monaco TJ, Weller SC, Ashton FM. Weed Science: Principles and Practices, Fourth Edition. John Wiley, New York. 2002.
- [4] www.ranwa.org/punealive/patrees.htm. Retrieved on 06/05/2012. Herb species richness of Pune city habitats.
- [5] Suwarna Punalekar, Mahajan DM, Kulkarni DK. Impact of exotic tree species on native vegetation of Vetal Hill, Pune, Indian Journal of forestry, 2010. 33: 4: 549-554.
- [6] Tallamy D. Bringing Nature Home. Timber Press Inc. 2007.
- [7] Turner MG, Garder RH, Neill RV. Landscape Ecology in Theory and Practice Springer-Verlag, New York, NY, USA. 2001.
- [8] Vanessa V; Shifting the local landscape: A guide to development of the Rhody native plant promotion program. Gold A., MESM TRACK: Wetland, Watershed and Ecosystem Science. 2011: 52.
- [9] Wu J, Landscape ecology. In: S.E. Jorgensen(ed), Encyclopedia of Ecology. Elsevier, Oxford. 2008.
- [10] Wu J, and Hobbs R. Key Topics in Landscape Ecology (Eds). Cambridge University Press, Cambridge. 2007
- [11] Pickett STA, et al., Urban ecological systems: Scientific foundations and a decade of progress, Journal of Environmental Management, 2010, 1-32,. doi:10.1016/j.jenvman.2010.08.022