
             
ISSN: 0975-8585   

July - August   2014  RJPBCS  5(4)  Page No. 955 

Research Journal of Pharmaceutical, Biological and Chemical 

Sciences 

 

Technical Aspects of Running Uncertain EDRP program in the Electricity 
Markets. 

 
 

Iraj Hemmati1*, Tahereh Entezari Harsini2, and Azam Entezari Harsini3. 
 

 

1,2,3 
Department of Electrical Engineering, College of Engineering, Islamshahr Branch, Islamic Azad University, 

Tehran, Iran. 

 
 
 

ABSTRACT 

 
Many studies have simply modeled responsive loads based on the elasticity definition and they have 

not considered a very important issue as uncertainty in their modeling. Considering uncertainty could make 
the model more realistic. This paper focuses on this important issue. A power model is proposed to simulate 
the customer's behavior enrolled on EDRP. The nonlinear behaviors of elastic loads are incorporated in 
modeling. The methodology is demonstrated through a practical case study on the Iranian power system. The 
obtained results on the proposed system demonstrate the great impact of running EDRP programs using 
proposed power model on the load profile of the peak day of the Iranian power system. 
Keywords: Demand Response programs, Elasticity, Emergency demand response programs.  
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INTRODUCTION 
 

Demand response programs (DRPs) are being inclusive in the electricity markets 
throughout the world. They are used to refer to mechanisms used to encourage consumers 
to reduce demand, thereby reducing the peak demand for electricity. Since power systems 
are generally sized to correspond to peak demand and also extra capacity for forecasting 
error and unforeseen events. DRPs may also be used to increase demand at times of high 
production and low demand period.  

 
Commercial and industrial power users might impose load shedding on themselves, 

without a request from the utility. Some businesses generate their own power and wish to 
stay within their energy production capacity to avoid buying power from the grid. Some 
utilities have commercial tariff structures that set a customer's power costs for the month 
based on the customer's moment of highest use, or peak demand. This encourages users to 
flatten their demand for energy, known as energy demand response, which sometimes 
requires cutting back services temporarily. According to the U.S. Department of Energy 
(DOE) report, the definition of demand response (DR) is: "Changes in electric usage by end-
use customers from their normal consumption patterns in response to changes in the price 
of electricity over time, or to incentive payments designed to induce lower electricity use at 
times of high wholesale market prices or when system reliability is jeopardized"[1]. DR is the 
modification of consumer demand for energy through various methods such as financial 
incentives [2] and education. Usually, the goal of demand side management is to encourage 
the consumer to use less energy during peak hours, or to move the time of energy use to 
off-peak times such as nighttime and weekends [3]. 

 
Peak demand management does not necessarily decrease total energy consumption, 

but could be expected to reduce the need for investments in networks and/or power plants 
for meeting peak demands. An example is the use of energy storage units to store energy 
during off-peak hours and discharge them during peak hours [4]. 

 
In this paper, we focus on Emergency Demand Response Programs (EDRPs) as 

incentive-based programs.  In EDRPs a significant amount of money (almost 10 times of the 
off peak electricity price) as an incentive payments provide to customers who reduce their 
load during reliability-triggered events; EDRPs may or may not contain penalties for non 
respondent customers. However, participation in such programs is voluntary. Running these 
programs had been very good results in USA. Figure 1 shows the implementation results of 
this program in New York Electricity Market in 2002 [5]. As it is shown, the ISO had been 
able to mitigate the price spark and turn prices back to its normal value. Also Peak load 
reduction is another result of EDRP implementation [6, 7]. 

 
Many researchers have modeled responsive load simply based on elasticity 

definition and they have not consider a very important issue as uncertainty in their model 
[7-10]. The previous models have two main defects. First the models are linear that could 
say customer behavior is not linear and could be more complicated than linear behavior in 
many real situations, and second is about demand elasticity which has modeled as a fixed 
value while there is some extent uncertainty in forecasted elasticity of demand. These 
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problem have been solved in this paper because they could help the model becomes more 
realistic. 

 

 
Figure 1: Impact of New York ISO emergency demand response during July 2002[5] 

 

In this paper, a power model to describe price dependent loads is developed such 
that the characteristics of EDRP programs can be imitated. The remaining parts of the paper 
are organized as following: the definition of elasticity is reviewed in section 2. Section 3 is 
about elasticity uncertainty. Power modeling of DR based on the concept of price elasticity 
of demand is developed in section 4. Section 5 is devoted to simulation results where the 
impact of EDRP programs via proposed exponential model on load profile of the peak day of 
the Iranian power system in 2007 is investigated. Finally, the paper is concluded in section 5. 
 
Elasticity definition 
 

Generally, electricity consumption like most other commodities, to some extent, is 
price sensitive. This means when the total rate of electricity decreases, the consumers will 
have more incentives to increase the demand. This concept is shown in figure 2, as the 
demand curve. 

 
Figure 2:  Demand curve 

 
Hachured area in fact shows the customer marginal benefit from the use of d  MWh 

of electrical energy. This is represented mathematically by: 
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Based on economics theory, the demand-price elasticity can be defined as follows:  
 

(2) 
  

  
 ⁄

  
  ⁄

 

For time varying loads, for which the electricity consumptions vary during different 
periods, cross-time elasticity should also be considered. Cross-time elasticity, which is 
represented by cross-time coefficients, relates the effect of price change at one point in 
time to consumptions at other time periods. The self-elasticity coefficient,    , (with 
negative value) ,which shows the effect of price change in time period t on load of the same 
time period and the cross-elasticity coefficient,    ́ ,(with positive value) which relates 
relative changes in consumption during time period t to the price relative changes during 
time period  ́ are defined by following relations: 
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Elasticity uncertainty 
 

The expression for the probability density function of a normal distribution is always 
written as 

 ( )  
 

 √  
   [

 (   ) 

   
] (5) 

 
Where   is mean value and     is standard deviation. 
 

Typical normal density function curves are shown in Figure 3 for a given value of    
and three values of  . Similarly since the value of    determines the amount of spread or 
dispersion and therefore the shape of the curve, it is referred to as the scale parameter. 

 
Figure 3: Normal density functions for three values of    . 
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It is extremely difficult to obtain sufficient historical data to determine the 
distribution describing the elasticity coefficient uncertainty. Published data, however, has 
suggested that the uncertainty can be reasonably described by a normal distribution. The 
distribution mean is the forecasted elasticity coefficient. The distribution can be divided into 
a discrete number of class intervals .The elasticity representing the class interval mid-point 
is assigned the designated probability for that class interval. This is shown in Figure 4, where 
the distribution is divided into seven steps. A similar approach can be used to represent a 
nun symmetrical distribution if required. It has been found that there is little difference in 
the end result between representing the distribution of elasticity coefficient uncertainty by 
seven steps or forty-nine steps. Here, we consider eleven intervals because our simulation 
showed that considering higher step numbers have no effect on the end result.  

 

 
Figure 4: Seven-step approximation of the normal distribution 

 
Power modeling of elastic loads 
 

The proper offered rates can motivate the participated customers to revise their 
consumption pattern from the initial value   

  to a modified level    in period t. 
 

   =      
   (6) 

 
Total incentive paid to customer in programs which contain incentive inct for load 

reduction in period t, will be as follows: 
 
   (   )       (  

    ) (7) 
 

It is reasonable to assume that customers will always choose a level of demand      
to maximize their total benefits which are difference between incomes from consuming 
electricity and incurred costs; i.e. to maximize the cost function given below: 

 
 [  ]           (   ) (8) 
 

The necessary condition to realize the mentioned objective is to have: 
 
  [  ]

   
    

    (   )

   
   (9) 

 
Thus moving the two last term to the right side of the equality, 
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  [  ]

   
         (10) 

 
 Substituting (9) to (3) and (4), a general relation based on forecasted elasticity 
coefficients is obtained for each time period t as follows:  
 
   
  

    ́
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  ́      ́
 (11) 

 
 By assuming constant forecasted elasticity for NT-hours period, 
   ́                     ́       integration of each term, we obtain the following relationship. 
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(12) 

 
 Combining the costumer optimum behavior that leads to (9), (10) with (11) yields the 
power model of elastic loads, as follows: 
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Parameter     is demand response potential which can be entered to model as 

follows:  
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The larger value of     means the more customers' tendency to reduce or shift 

consumption from peak hours to the other hours. 
 

Elasticity uncertainty based on details explained in the previous section could be 
considered in the equation number (14) as follow: 
 

   ∑*     (  
     

 (∏[
(  ́      ́)

 

  ́(  ́
      ́)

]

     ́  

 ́  

  ))+

  

   

 (15) 

 
Where ND is the number of class intervals,          probability of class interval 

    and      ́  is mid-point of class interval    . 
 
Simulation results 
 

In this section numerical study for evaluation of proposed model of EDRP programs 
are presented. For this purpose the peak load curve of the Iranian power grid on 
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28/08/2007 (annual peak load), has been used for our simulation studies [11]. Also the 
electricity price in Iran in 2007 was 150 Rials (Unit of Iranian currency). This load curve, 
shown in figure 5, divided into three different periods, namely valley period (00:00 am–9:00 
am), off-peak period (9:00 am–7:00 pm) and peak period (7:00 pm–12:00 pm).  

 

  
Figure 5: Initial load profile 

 
The selected values for the self and cross elasticities have been shown in Table 1. 
 

Table 1: self and cross elasticities 
 

 Low Off-peak Peak 

Low -0.10 0.014 0.016 

Off-peak 0.014 -0. 10 0.012 

Peak 0.016 0.012 -0. 10 

 
The considered scenarios have been listed in Table 2. 
 

Table 2: The considered scenarios  

 
Scenario 
number 

EDRP rates  
(Rials/MWh) 

Incentive in peak periods 
(Rials/MWh) 

Demand response  
potential (%) 

1 Flat 160 400 10% 

2 Flat 160 400 20% 

3 Flat 160 400 30% 

 
Figure 6 depicts the percent of load factor improvement in different scenarios. As 

seen, in scenario 1, increasing uncertainty through increasing   leads to a bad result which 
is load factor decreasing, in scenario 2, we achieve to higher load factor when    increases, 
in fact it is the main goal of system operator, and in scenario 3 we have both of the 
mentioned above results. From figure 6, we can understand that when   is about 75%, slow 
increasing progress of load factor is stopped and it starts to decrease rapidly.  It could be 
concluded that in low level of demand response potential, high uncertainty could lead to 
worse load factor values. Increasing in demand response potential mitigates this 
phenomena and even causes to correct and increase load factor. Increasing more in demand 
response potential cannot make this process better and may have destructive effect on it 
which has been discussed above.    
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Figure 6: Percent of load factor improvement in different scenarios 

 
Figure 7 shows scenario priority from load factor improvement aspect. As seen, for 

  lower than 95%, scenario 2 has the highest priority and after that there are scenario 3 and 
1, respectively. For   higher than 95%, the priority of scenarios 2 and 3 is exchanged. But 
scenario 2 still has the highest priority. 

 

 
Figure 7: Scenario priority from LF improvement aspect 

 
CONCLUSION 

 
In this paper has been investigated the effect of considering uncertainty in demand 

response modeling. The customers' response to EDRP program has been model based on 
power function. This model can help sponsor's EDRP programs to simulate the behavior of 
customers for the purpose of improvement of load profile characteristics as well as 
satisfaction of customers. The studies were carried out on Iranian power system. Validate of 
the proposed technique showed by many simulation results.   
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Nomenclature  

 
0 Initial state index (Superscript) 
i Class interval index (subscript) 
   ́ Time period indices (subscript) 
ND Number of class intervals of normal density function 
NT Number of hours within period of study 
d Load (MW) 
  Price (Rials/MWh) 
   Demand change (MW) 
   Price change ( Rials/MWh) 
 [  ] Benefit of consumer at time period t by consuming     
    Self elasticity 
   ́ Cross elasticity 
      Self elasticity in interval class     
     ́  Cross elasticity in interval class     

      Probability of class interval     
     incentive payment for load reduction in period t 
  Demand response potential (%) 
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