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ABSTRACT 

  
In many standard applications like peer-to-peer systems, large amounts of data are distributed among 

multiple sources. Analysis of this data and identifying clusters is difficult due to process, storage, and 
transmission costs. A GD Cluster, a general fully decentralized clustering method, which is capable of clustering 
dynamic and distributed data sets. Nodes continuously cooperate through decentralized gossip-based 
communication to maintain summarized views of the data set. We customize GD Cluster for execution of the 
partition-based and density-based clustering methods on the summarized views, and also offer enhancements 
to the basic algorithm. Coping with dynamic data is made possible by gradually adapting the clustering model.  
We Proposed a Decentralized Clustering Frame Work Search Engines. Coping with dynamic data is made 
possible by gradually adapting the clustering model. Our experimental evaluations show that GD Cluster can 
discover the clusters efficiently with scalable transmission cost, and also expose its supremacy in comparison 
to the popular method LSP2P. 
Keywords: Distributed systems, clustering, partition-based clustering, density-based clustering, dynamic 
system. 
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INTRODUCTION 
 
 World Wide Web could be a terribly large distributed digital data space. The flexibility to search and 
retrieve data from the web efficiently and effectively is an enabling technology for realizing its full potential. 
Current search tools retrieve too several documents, of which only a small fraction are relevant to the user 
query. Furthermore, the most relevant documents do not necessarily appear at the top of the query output 
order. Clustering Techniques are now being used to provide a meaningful search result on web. Text document 
clustering has been traditionally investigated as a means of up the performance of search engines. We 
presenting a thorough comparison of the algorithms based on the assorted aspects of their features and 
functionality. Furthermore, we highlight the main characteristics of a number of existing web clustering 
engines and also discuss how to evaluate their retrieval performance is Low. 
 
 With the increase in information on the World Wide Web it has become difficult to find the desired 
information on search engines. One approach that tries to solve this problem is using clustering techniques for 
grouping similar documents together in order to facilitate presentation of results in more compact form and 
enable thematic browsing of the results set. It is used to give a meaningful search result on web. The four main 
criteria for creating cluster categories: Making the titles concise, accurate, distinctive, and "humanlike" -- in 
other words, not something that looks like it was generated by a machine. One common feature of most 
current common approach in distributed cluster is to mix and merge native representations in an exceedingly 
central node, or aggregate native models in an exceedingly hierarchical data structure [2], [3]. Some recent 
proposals, though being fully decentralized , include synchronization at the end of each round, and/or need 
nodes to keep up history of the cluster [4], [5], [6], [7]. In this paper, a general distributed cluster algorithm 
(GD Cluster) is projected and instantiated with two standard partition-based and density-based cluster 
strategies. 
 
 We initial introduce a basic methodology during which nodes bit by bit build a summarized read of 
the data set by endlessly exchanging data on data things and data representatives victimization gossip-based 
communication. Gossiping [8] is employed as a simple, robust and efficient dissemination technique , that 
assumes no predefined structure in the network. The summarized read may be a basis for execution weighted 
versions of the cluster algorithms to produce approximations of the ultimate cluster results. 
 
 GD Cluster can cluster a data set that is distributed among a large number of nodes in a distributed 
atmosphere. It will handle 2 categories of cluster, namely partition-based and density-based, whereas being 
totally redistributed, asynchronous, and conjointly adjustable to churn. The general design principles utilized 
within the proposed algorithm also enable customization for different categories of cluster, which are ignored 
of this paper. we tend to conjointly discuss enhancements to the algorithm significantly geared toward rising 
communication costs. 
 

The simulation results given victimization real and artificial  data sets, show that GD Cluster is ready to 
realize a high quality global cluster solution, which approximates centralized cluster. we tend to conjointly 
justify effects of assorted parameters on the accuracy and overhead of the algorithm. We compare our 
proposal with central cluster and with the LSP2P algorithm [4], and conjointly show its ascendancy in clustering 
engines is that they do not maintain their own index of documents; similar to meta search engines, they take 
the search results from one or more publicly accessible search engines. The low precision of the web search 
engines coupled with the long ranked list presentation make it hard for users to find the information they are 
looking for. It takes lot of time to find the relevant information. Typical queries retrieve hundreds of 
documents, most of which have no relation with what the user was looking for. According to this, we 
considered Web-snippet clustering engine is a useful complement to the flat, ranked list of results offered by 
classical search engines (like Google).  
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Fig. 1. A graphical view of the system model. 
 

 
 

Fig. 2. The overall view of the algorithm tasks. 

 
Web snippet (short description) clustering also known as Web Search Result Clustering is an attempt 

to apply the idea of clustering to snippets returned by a search engine in response to a query. Thus, it can be 
perceived as a way of organizing the snippets into set of meaningful thematic groups. Actually, clustering 
engines are usually seen as complementary instead of alternative to search engines. Not only has search 
results clustering attracted considerable commercial interest, but it is also an active research area, with a large 
number of published papers discussing specific issues and systems. 
 

 Search results clustering is clearly related to the field of document clustering but it poses unique 
challenges concerning both the effectiveness and the efficiency of the underlying algorithms that cannot be 
addressed by conventional techniques. The main difference is the emphasis on the quality of cluster labels, 
whereas this issue was of somewhat lesser importance in earlier research on document clustering. A clustering 
engine tries to address the limitations of current search engines by providing clustered results as an added 
feature to their standard user interface and meaningful labels. This paper gives an idea about document 
clustering, Web Page document clustering and clustering engines. 

 
SYSTEM MODEL 

    
We consider a group P ¼ fp1; p2; . . . ; png of n networked nodes. Each node p stores and shares a 

group of data items means p , denoted as its internal data, which can modification over time. D ¼ S p2Pdint p 
is the set of all data items obtainable within the network. every data item d is conferred victimization AN 
attribute vector denoted as data. Whenever transmission of data things is mentioned within the text, 
transmission of the respective attribute vector is meant. 

 
While discovering clusters, p may additionally store attribute vectors of data items from alternative 

nodes. these things are referred to because the external data of p, and denoted as Dext p . The union of 
internal and external data items of p is observed as Dp ¼ Dint p [ Dext p]. 
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 During algorithm execution, every node p gradually builds a summarized view of D, by maintaining 
representatives, denoted as Rp ¼ frp 1; rp 2; . . . ; rp kpg. each representative r two Rp is a synthetic data item, 
summarizing a subset Dr of D. The attribute vector of r, rattr, is ideally the average of attribute vectors1 of 
data items in Dr.  The intersection of these subsets need not be empty, i.e., 8r; r0 2 Rp:jDr \ Dr0j  0. the 
particular set Dr isn't maintained by the algorithm, and is discarded once r is produced. Each data item or 
representative x in p, has an associated weight wpðxÞ. the load of x is capable the amount of data items that, 
p believes, x consists of. counting on whether x may be a representative or a data item, wpðxÞ ought to ideally 
be adequate jDxj or one, severally. 
 

The goal of this work is to create certain that the whole data set is clustered in a very absolutely 
decentralized fashion, such that each node p obtains AN accurate clustering model, without collecting the 
complete data set. The illustration of the clustering model depends on the particular clustering method. For 
partition-based and density-based clustering, a centroid and a collection of core points will function cluster 
indicators, respectively. Whenever the actual form of clustering is not necessary, we tend to discuss with the 
clustering methodology simply as F. Fig. 1 provides a summarized read of the system model. 
 

DECENTRALIZED CLUSTERING 
 

Each node gradually builds a summarized read of D, on which it will execute the clustering algorithm 
F. within the next sections, we tend to initial discuss however the summarized read is constructed. Afterwards, 
the strategy of weight calculation is represented, followed by the execution procedure of the clustering 
algorithm. 
 
Building the Summarized read 
 

As represented in Section two, we tend to assume that the whole data set can be summarized in 
every node p, by means that of representatives. Each node p is accountable for derivation accurate 
representatives for a part of the data set situated close to means p . For other parts, it exclusively collects 
representatives. consequently, it gradually builds a global view of D. each node endlessly performs 2 tasks in 
parallel:  

 
(i) Representative derivation, which we tend to name DERIVE and ii) representative collection, which we tend 
to name COLLECT. the two tasks can execute repeatedly and endlessly in parallel. a top level view of the tasks 
performed by every node is demonstrated in Fig. 2. We use two gossip-based, decentralized  cyclic algorithms 
to accomplish the two tasks, as represented within the next sections. 
 
DERIVE 
 

To derive representatives for a part of the information set situated near Dint p , p should have an 
correct and up-to-date view of the data situated around every data d a pair of means p In every spherical of 
the DERIVE task, every node p selects another node q for a three-way data exchange, as shown in Fig. 3. It 
should initial send dint p to node q. If size of dint p is large, it can summarize the internal data by an arbitrary  
technique corresponding to grouping the data using clustering, and causing one data from each group. Node p 
then receives from q, data item located in radius r of each d two means p , based on a distance function d. r 
could be a user-defined threshold, which might be adjusted as p continues to discover data (to that we have a 
tendency to come to in Section 6.1). within the same manner, it'll additionally send to Q the data in dp that lie 
at intervals the r radius of data in means q 
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Fig. 3. Task DERIVE: (a) active thread for p and (b)passive thread for selected node q. 

 
. 
 

The operation updateLocalDataðÞ is employed to feature the received data to Dext p . Knowing some 
data situated at intervals radius r of some internal data item d, node p will summarize all this data into one 
representative. this can be performed periodically each t gossip rounds using the algorithm of Fig. 4. The 
merge Weights operate, updates the representative weight, and is later represented in Section three.3 
 
COLLECT 
 

To fulfill the COLLECT task, every node p selects a random node each T time units, to exchange their 
set of representatives with one another (Fig. 5). each nodes store the total set of representatives. The 
summarize operate utilized in the algorithm, simply returns all the representatives given to that as input. A 
special implementation of this perform is represented in Section 5.1, which reduces the quantity of 
representatives. Initially, every node has solely a group of internal data items, Dint p. Thus, the set of 
representatives at each node is initialized with all of its data things, i.e., Rp ¼ Dint p. 

 

 
 

Fig. 4. (a) Extracting representatives from the collected data, (b) removing repetitive representatives. 
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Fig. 5. Task COLLECT: (a) active thread for p and (b) passive thread for selected node q. 

 
The two algorithms of tasks DERIVE and COLLECT, start with a preprocessing operation. in this basic 

algorithm, these operations haven't any special operate, so we defer their discussion to Section 4. The 
graphical illustration of the communication performed in DERIVE and COLLECT is represented in Fig. 6. The 
operation select Node Þ employed in Figs. 3 and 5, employs a peer-sampling service to come a node elite 
uniformly arbitrarily from all live nodes within the system (see, e.g., [9]). 
 
Diffusion Speed 
 

In tasks DERIVE and COLLECT we use gossiping as a propagation media. this can be particularly 
completely different from aggregation protocols [8] that use gossiping to achieve agreement on aggregations. 
using vocabulary of [8] and ignoring the details, the general approach of GD Cluster is simplified as follows. at 
all times t, a node p maintains an ordered set (not a sum) stp, initialized to s0;p ¼ dint p , and an ordered set of 
corresponding weights wt p. At every time step t, p chooses a target node ftðpÞ uniformly arbitrarily and sends 
each collections to that node and itself. It calculates union of the received pairs ð^sr; ^wrÞ from different 
nodes with its own s and w sets. In step t of the algorithm, st;p is that the view p has on the entire dataset, 
whereas wt;p contains the corresponding weight of each view component. because the set s quickly becomes 
large, the notion of representatives are introduced. Node p can summarize the elements of st;p by removing a 
subset, computing the average of its components (locally), and replacing the typical value in st;p. The 
corresponding weights ought to even be removed and replaced by the aggregate weight. This summarized 
view is tagged Rp during this paper. 

 
According to [8] and [10], a message that originate with pat time t0 and is forwarded by all nodes that 

have received it, can reach all nodes in time at the most 4 log N þ log 2 d with probability a minimum of one  d 
2. Therefore, once a similar time order, the summarized view of p, can have parts from all alternative nodes, 
either in their raw kind or embedded in a very representative. 
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Fig.6. A schematic diagram of Weight Calculation 

 
Weight Calculation 
 

When representatives are incorporate, as an instance in the perform Remove Repetitive, a special 
technique ought to be devised for weight calculation. The algorithm doesn't record the set Dr for every 
representative r, because of resource constraints. Also, there's a clear stage of intersection between 
summarized data of various representatives. to handle the load calculation issue, representative points are 
among a (small size) “estimation field”, that enables us to approximate the number of actual things it 
represents. 
 
Final clustering  
 

The final clustering algorithm F is executed on the set of representatives in a very node. Node p will 
execute a weighted version of the clustering algorithm on Rp, any time it needs, to realize the ultimate 
clustering result. in a very static setting, continuous execution of DERIVE and COLLECT can improve the 
standard of representatives inflicting the clustering accuracy to converge. in the following, we tend to discuss 
partition-based and density-based clustering algorithms as examples. 

 
Partition-based clustering 
 

K-means [12] considers data items to be placed in an m-dimensional topological space, with an 
associated distance measured. It partitions the data set into k clusters, C1,C2, . . . , Ck. each cluster Cj contains 
a centroid mj, that is outlined as the average of all data assigned  to that cluster. This algorithm tries to reduce 
the subsequent objective function: 

 
                 K Σ Σ|| dl-μj ||2   eq. (1) 
                  J=1 dl€ cj 
  

Weighted K-means assumes a positive weight for each data item and uses weighted averaging. They 
themselves will be assigned weight values, indicating variety of data appointed to the clusters. The formal 
definition of the weighted Kmeans is given thoroughly. 
 

The algorithm proceeds heuristically. a set of random centroids are picked at first, to be optimized in 
later iterations. The obtainable approaches of distributed partition-based clustering usually assume identical 
initial K-means centroids all told nodes [4], [5], [6]. This is, however, not needed in our algorithm as every node 
will use an arbitrary parameter k with an impulsive set of initial centroids. 
 
Density-Based clustering 
 

In density-based clustering, a node p can execute, for instance, a weighted version of DBSCAN on Rp 
with parameters minPts and ". In DBSCAN, item is marked as a core point if it has at least minPts data items at 
intervals its radius. 

 
Also, 2 core points are among one cluster, if they are in “range of each other, or are connected by a 

sequence of core points, where each two consecutive core points have a maximum distance of “. A non-core 
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data item set at intervals distance from a core purpose, is within the same cluster as that core purpose, 
otherwise it's an outlier. 

 
In our algorithm, each representative may cover a locality with radius a pair of bigger than. conjointly 

a representative doesn't necessarily have constant attribute vector as any regular data item. Therefore, 
representatives don't directly mimic core points. all the same, core points in DBSCAN are a way of describing 
data density. Adhering to the current thought, representatives may indicate dense areas. 

 
The ᵖ parameter of the DERIVE task may be set to €. This ensures that if some data item could be a 

core point, the corresponding derived representative can have a minimum weight of minPts. This 
customization conjointly suggests that per each internal data item, at the most minPts data items ought to be 
transferred in COLLECT. one amongst the advantages of DBSCAN is its ability to discover outliers. to realize this 
in our algorithm, task COLLECT ought to be customised to transfer solely representatives with weight larger 
than minPts. This causes representatives settled outside the particular clusters to not be disseminated within 
the network, and improves the general clustering accuracy. The density-based clustering methodology simply 
described may be thought of a rather changed version of the distributed density-based clustering algorithm Go 
Scan. 
 

In Go Scan nodes detect core points and disseminate the through methods very similar to COLLECT 
and DERIVE. Go Scan is an exact method, whereas here we are providing an approximate method. The 
approximation imposes less communication overhead, and faster convergence of the algorithm. 

 
Dynamic Data Set: 

 
Real-world distributed systems change continuously, because of nodes joining and leaving the system, 

or because Their set of internal data is modified. To model staleness of data, each data item will have an 
associated age. Agep(d denotes the time that node p believes has passed since d was obtained from its 
originating, owning node. Time is measured in terms of gossiped rounds. The age of data items accompany 
them in the DERIVE task. The age of an external data item at node p is increased (by p) before each 
communication; the age of an internal data always remains zero to reflect that it is stored (and upto-date) at 
its owner. If a node p receives a copy d0 of a data item d it already stores, age p(d) is set to min{age p(d),age 
p(d’)} (and d’is further ignored). 
 

When a data item d is removed from the original peer, the minimal recorded age among all its copies 
will only increase. Node p can remove data item d if age p(d) > MaxAge, where MaxAge is some threshold 
value, presuming that the original data item has been removed. An age argument is also associated with each 
representative; age p(r) is set to zero when r is first produced by p, and increased by one before each 
communication. 

 
The weight of a data item or a representative is a function of its age. For a data item d, the weight 

function is ideally one for all age values not greater than MaxAge. The data items summarized by a 
representative have different lifetimes according to their age. Therefore, the weight of the representative 
should capture the number of data items summarized by the representative at each age value. When the 
weight value falls to zero, the representative can be safely removed. 
 

We will see below that instead of the actual weight, the weight estimators are stored per each age 
value to enable 

 
Further merging and updating of representatives. The weight function of a representative will always 

be in the form of a descending step function for values greater than age p(r), and will reach zero at most at age 
p(r)+ MaxAge. All of the data currently embedded in the representative will be gradually removed, and no data 
can last longer that MaxAge units from the current time. With the weight function being dependent on age, 
the weight estimators are in turn bound to the age values. ^wpl(x, t) presents the l’th weight estimator of item 
x in age t, from the view of peer p. For a data item d, while age p(d) ≤ MaxAge, each weight estimator 
preserves its initial value, and is null otherwise. For a representative r, s weight estimators are recorded at 
each age value greater than age p(d), up to the point where all data embedded in the representative are 
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removed. To incorporate these new concepts in the basic algorithm, the two preprocessing operations of 
DERIVE and COLLECT should be modified to increase age values of data and representatives, and remove them 
if necessary. Moreover, before storing the received data in DERIVE, the age values for repetitive data items 
should be corrected. 
 
Enhancements: 
 

In this section we discuss a number of improvements to the basic algorithm, to enhance the 
consumed resources. 

 
Summarization 
 

Nodes may have limited storage, processing and communication resources. The number of 
representatives maintained at a node increases as the DERIVE and COLLECT tasks proceed. When the number 
of representatives and external data items stored at p exceeds its local capacity LCp, first the representative 
extraction algorithm of Fig. 4 is executed to process and then discard external data. Afterwards, the 
summarization task of Fig. 11 is executed with parameters Rp and αLCp, and the result is stored as the new Rp 
set. 0 < α < 1 is a locally determined parameter, controlling consumption of local resources. Dealing with 
limitations of processing resources is similar. If the number of representatives and external data items to be 
sent by p in the DERIVE and COLLECT tasks, exceeds its communication capacity CCp, the same summarization 
task is executed with parameters Rp and βCCp. Thus, a reduced set of representatives is obtained. 0 < β < 1 is a 
parameter controlling the number of transmitted representatives. If the external data items to be sent in the 
DERIVE task exceed the communication limits, sampling is used to reduce the amount of data. The 
summarization task actually makes use of weighted K-means (described in Section 3.3.1), which 
effectively “summarizes” a collection of data items by means of a single representative with an associated 
weight. 
 
Performance Evaluation: 
 

We evaluate the GD Cluster algorithm in static and dynamic settings. We will also compare GD Cluster 
with a central approach and with LSP2P, a recently proposed algorithm being able to execute in similar 
distributed settings. 

 
Evaluation Model 
 

We consider a system of N nodes, each node initially holding a number of data items, and carrying out 
the DERIVE and COLLECT tasks iteratively. For simplicity and better understanding of the algorithm, we 
consider only data churn in the dynamic setting. In each round, a fraction of randomly selected data items is 
replaced with new data items. By using the peer sampling service, the network structure is not a concern in 
the evaluations. Each cluster in the synthetic data sets consists of a skewed set of data composed from two 
Gaussian distribution with different values of mean and standard deviation. The real data sets used for the 
partition-based clustering are the well-known Shuttle, MAGIC Gamma Telescope, and Pen digits data sets 3. 
These data sets contain nine, 10, and 16 attributes, and are clustered into seven, two, and 10 clusters, 
respectively. From each data set, a random sample of 10, 240 instances are used in the experiments. To assign 
the data set D to nodes, two data-assignment strategies are employed, which aid at revealing special behaviors 
of the algorithm: 

 
1. Random data assignment (RA): Each node is assigned data randomly chosen from D. 
2. Cluster-aware data assignment (CA): Each node is assigned data from a limited number of clusters. 
 

The second assignment strategy abates the average number of nodes that have data close to each 
other. Such a condition reduces the number of other nodes which have target data for the COLLECT task. 
When applying churn, in the first assignment strategy, data items are replaced with random unassigned data 
items. The second data assignment strategy allows concept drift when applying churn, by reserving some of 
the clusters and selecting new points from these clusters. Concept drift refers to change in statistical 
properties of the target data set which should be clustered. Nodes can adjust the r parameter during execution 
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based on the incurred communication complexity. In the evaluations, for simplicity, the r parameter is selected 
such that the average number of data located within the r radius of each data item is equal to 5. Different 
parameters used in conducting the experiments, along with their value ranges and defaults, are presented in 
Table 1. The parameter values are selected such that special behaviours of the algorithm are revealed. LC and 
CC are measured as multiples of the required resource for one representative. The majority of the evaluations 
are performed with partition- based clustering. Partial evaluation on density based clustering is discussed at 
the end of the section. 

 
Table 1: Evaluation modeling 

 

 
 

4. SEARCHING METHODOLOGIES 
 

There are two types of search algorithms: algorithms that don’t make any assumptions about the 
order of the list, and algorithms that assume the list is already in order. We’ll look at the former first, derive 
the number of comparisons required for this algorithm, and then look at an example of the latter. In the 
discussion that follows, we use the term search term to indicate the item for which we are searching. We 
assume the list to search is an array of integers, although these algorithms will work just as well on any other 
primitive data type (doubles, characters, etc.). We refer to the array elements as items and the array as a list. 

 
Linear Search: 
 

The simplest search algorithm is linear search. In linear search, we look at each item in the list in turn, 
quitting once we find an item that matches the search term or once we’ve reached the end of the list. Our 
“return value” is the index at which the search term was found, or some indicator that the search term was 
not found in the list. 

 
Algorithm for linear search 
 

For (each item in list) 
{ 
Compare search term to current item 
If match, 
Save index of matching item 
break 
} 
Return index of matching item, or -1 if item not found 
 

Performance of linear search 
 

When comparing search algorithms, we only look at the number of comparisons, since we don’t swap 
any Values While searching. Often, when comparing performance, we look at three cases: 

 Best case: What is the fewest number of comparisons necessary to find an item. 
 Worst case: What is the most number of comparisons necessary to find an item 
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 Average case: On average, how many comparisons does it take to find an item in the list. For linear 
search, our cases look like this: 

 Best case: The best case occurs when the search term is in the first slot in the array. The number of 
Comparisons in this case is 1. 

 Worst case: The worst case occurs when the search term is in the last slot in the array, or is not in the 
Array. The number of comparisons in this case is equal to the size of the array. If our array has N 
items, then it takes N Comparisons in the worst case. 

 Average case: On average, the search term will be somewhere in the middle of the array. The number 
of comparisons in this case is approximately N/2. 
 
In both the worst case and the average case, the number of comparisons is proportional to the 

number of items in the array, N. Thus, we say in these two cases that the number of comparisons is order N, or 
O (N) for short. For the best case, we say the number of comparisons is order 1, or O (1) for short. 

 
Binary Search: 
 

Linear search works well in many cases, particularly if we don’t know if our list is in order. Its one 
drawback is that it can be slow. If N, the number of items in our list, is 1,000,000, then it can take a long time 
on average to find the search term in the list (on average, it will take 500,000 comparisons). What if our list is 
already in order. Think about looking up a name in the phone book. The names in the phone book are ordered 
alphabetically. Does it make sense, then, to look for “Sanjay Kumar” by starting at the beginning and looking at 
each name in turn? No! It makes more sense to exploit the ordering of the names, start our search somewhere 
near the K’s, and refine the search from there. Binary search exploits the ordering of a list. The idea behind 
binary search is that each time we make a comparison; we eliminate half of the list, until we either find the 
search term or determine that the term is not in the list. We do this by looking at the middle item in the list, 
and determining if our search term is higher or lower than the middle item. If it’s lower, we eliminate the 
upper half of the list and repeat our search starting at the point halfway between the first item and the middle 
item. If it’s higher, we eliminate the lower half of the list and repeat our search starting at the point halfway 
between the middle item and the last item. 
 
Algorithm for binary search 
 
 set first = 1, last = N, mid = N/2 
 while (item not found and first < last) 
 { 
 compare search term to item at mid 
 if match 
 save index 
 break 
else if search term is less than item at mid, 
 set last = mid-1 
 else 
 set first = mid+1 
 set mid = (first+last) 
 } 
 return index of matching item, or -1 if not found 
 
Performance of binary search 
 

The best case for binary search still occurs when we find the search term on the first try. In this case, 
the search term would be in the middle of the list. As with linear search, the best case for binary search is O(1), 
since it takes exactly one comparison to find the search term in the list. 

 
The worst case for binary search occurs when the search term is not in the list, or when the search 

term is one item away from the middle of the list, or when the search term is the first or last item in the list. 
How many comparisons does the worst case take. To determine this, let’s look at a few examples. 
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Suppose we have a list of four integers: {1, 4, 5, 6}. We want to find 2 in the list. According to the 
algorithm, we start at the second item in the list, which is 4.2 Our search term, 2, is less than 4, so we throw 
out the last three items in the list and concentrate our search on the first item on the list, 1. We compare 2 to 
1, and find that 2 is greater than 1. At this point, there are no more items left to search, so we determine that 
2 is not in the list. It took two comparisons to determine that 2 is not in the list. Now suppose we have a list of 
8 integers: {1, 4, 5, 6, 9, 12, 14, 16}. We want to find 9 in the list. Again, we find the item at the midpoint of the 
list, which is 6. We compare 6 to 9, find that 9 is greater than 6, and thus concentrate our search on the upper 
half of the list: {9, 12, 14, 16}. 

 
We find the new midpoint item, 12, and compare 12 to 9. 9 is less than 12, so we concentrate our 

search on the lower half of this list (9). Finally, we compare 9 to 9, find that they are equal, and thus have 
found our search term at index 4 in the list. It took three comparisons to find the search term. If we look at a 
list that has 16 items, or 32 items, we find that in the worst case it takes 4 and 5 comparisons, respectively, to 
either find the search term or determine that the search term is not in the list. In all of these examples, the 
number of comparisons is log2 N3. This is much less than the number of comparisons required in the worst 
case for linear search! In general, the worst case for binary search is order log N, or O(logN). The average case 
occurs when the search term is anywhere else in the list. The number of comparisons is roughly the same as 
for the worst case, so it also is O(logN). 
 
In general, anytime an algorithm involves dividing a list in half, the number of operations is O(log N). 
 

SIMULATION RESULTS 
 
We start by presenting the simulation results for the static network, and then proceed to dynamic 

configurations. Evaluation of different parameters is mainly performed with the synthetic data set, as we can 
efficiently control the number of clusters, data density and the churn ratio. 

 
Static Settings 
 

When network data is persistent, each node gradually learns the data through its representatives, and 
the clustering accuracy converges. The algorithm behavior in a static setting is shown in Fig.3, where the 
number of internal data items of each node, N int , varies from 2 to 10. The trend of clustering accuracy 
convergence against simulation rounds, is shown for basic and enhanced GD Cluster. Convergence is identified 
by three rounds of minor (less than 1 percent) change in results. The accuracy converges in to 100% and more 
than 95% in basic and enhanced GD Cluster respectively. The enhanced GD Cluster offers less converged 
accuracy values due to limited transmission of representatives and data, which reduces the quality of the 
constructed view of data in each node. As observed, in this setting, when nodes have few data (e.g., Nint = 2), 
detecting accurate clusters is harder, due to sparseness of clusters. 

 

 
 

Fig. 7. Convergence and cost evaluation in static settings when Nint varies. Comparing incremental configurations: basic; 
regression; reduced communication; reduced storage (enhanced GD Cluster). 
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The same figure compares the basic GD Cluster with three improved versions, when N int varies. 
Communication and storage overheads show average per round values until convergence for each node. The 
values are considerable for the basic GD Cluster due to the storage and transmission of a large number of 
external data items and representatives. The first improved version involves regression to reduce the weight 
estimators. As expected, this improvement preserves the clustering accuracy, while reducing the resource 
consumption up to 80%. In the next improvement, the communication capacity is restricted. In this setting, the 
AC values decrease by approximately 2 percent, while the communication overhead experiences a major 
reduction. Further limitation of storage capacity in the last improvement, still keeps AC above 95%, but dis 
allocates local resources. 

 

 
 

Fig. 8: It shows the behaviour of GDCluster when the network size varies from 1024 to 16384 nodes. The AC values have 
converged to more than 90%. This shows the efficiency and scalability of the algorithm. In the random data-assignment 

strategy, AC values are initially higher. This is due to each node initially having internal data items from different 
clusters, enabling it to identify more clusters. As the performance of the algorithm for different network sizes is very 

similar, we used the average values of different metrics for N = 1024 as a baseline in table 2, and showed the difference 
of values for other network sizes. Convergence in a static setting, when N varies (average values in table 2) 

 
The RandI values converge to 100%. The communication and storage overheads of the algorithm 

remain constant due to restricting resource consumption. As observed, the differences of values for different 
network sizes are small, showing scalability of the algorithm. In the evaluation of the algorithm using real data 
sets, both central K means and GD Cluster are evaluated against the actual labels of data, and the results are 
presented in Table 3. GD Cluster is executed in a network of 1024 nodes, each having 10 data items. The AC 
and RandI values for GD Cluster are very close to those of the central K-means. Because GD Cluster executes K-
means on the representatives instead of data, when compared to actual data labels, its accuracy may even 
surpass the central results for some data sets. The results show the efficiency of the algorithm in conforming 
to central clustering for real-world data. 
 
Dynamic Settings 
 

The MaxAge parameter puts an upper bound on the storage period of external data items, and 
representatives. Fig.5 shows the evaluation of the basic GDCluster algorithm when MaxAge varies. Very low 
values of MaxAge prohibit complete propagation of information in the network, and also cause early removal 
of data and representatives. Large values, on the other hand, maintain invalid information longer than 
required and degrade accuracy. The optimum behavior of the algorithm is observed when MaxAge is equal to 
6. 
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Table 2: Performance differences when N varies with respect to N = 1024 

 

 
 

Table 3: Average values of evaluation metrics for 50 runs of the algorithm with real data sets 
 

 
 

 
 

Fig. 9. Effect of changing MaxAge 

 
This is consistent with the earlier observation of quick convergence of the algorithm. Therefore, 

MaxAge should be chosen to be compatible with algorithm convergence rate, as to remove the data at a 
reasonable pace. Fig. 6 shows the evaluation of the algorithm against different metrics in a dynamic setting, 
with 10% churn. With the CA strategy, concept drift is observed as some clusters are introduced later to the 
network. As illustrated in Fig. 6, for all network sizes, the AC value rises to approximate average values of 94% 
and 93% with the RA and CA strategies, respectively. Although data changes regularly, the RA strategy ensures 
that previously discovered clusters remain valid through data change. This ensures higher AC values 
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Fig. 10 . Evaluation of GD Cluster in dynamic setting, when N varies. 

 
With concept drift, nodes should move on to discover representatives in the new clusters. It also 

takes some time for the removed data to be discarded by the embedding representatives. Similar trends are 
observed for the RandI metric, where approximate average values of 98% and 96% are achieved for RA and CA 
strategies, respectively. The algorithm has acceptable performance in detecting clusters, even in dynamic 
settings. Finally the same figure shows that the communication overhead for different network sizes remains 
roughly the same. This is mainly due to removal of representatives in the dynamic setting which reduces the 
amount of transferred data between nodes. 
 
Comparison with LSP2P 
 

The LSP2P algorithm executes the K-means in an iterative manner, with each node synchronizing with 
its neighbors during each iteration. In a static setting, the algorithm is initiated at a single node p, which picks a 
set of random initial centroids along with a termination threshold g > 0 (which we explain shortly). P sends 
these to all its immediate neighbors, and begins iteration 1. When a node receives the initial centroids and 
threshold for the first time, it forwards them to its remaining neighbors and initiates iteration 1. In each 
iteration, every node p executes one round of K-means on its local data based on the centroids computed 
inthe previous iteration. It then prompts its immediate neighbors for their corresponding cluster centroids, 
and updates local centroids based on the received information. Once the computed centroids of two 
consecutive iterations, deviate less than g from each other, p enters the terminated state. In a dynamic setting, 
the change of data may reactivate the nodes. Regarding the above descriptions on LSP2P, it is observed that 
the initial centroids are identical in all nodes, which prohibits changing the number of produced clusters. 
 

Also, if K-means is to be executed with different initial centroids, a new instance ofLSP2P should be 
started. Moreover, the history of executing the K means algorithm is particularly important, and maintained in 
each node. 

 
CONCLUSION AND FUTURE WORK 

 
In this paper we first identified the necessity of an effective and efficient distributed clustering 

algorithm. Dynamic nature of data demands a continuously running algorithm which can update the clustering 
model efficiently, and at a reasonable pace. 

 
 We introduced GD Cluster, a general fully decentralized clustering algorithm, and instantiated it for 

partition-based and density-based clustering methods. The proposed algorithm enabled nodes to gradually 
build a summarized view on the global data set, and execute weighted clustering algorithms to build the 
clustering models. Adaptability to dynamics of the data set was made possible by introducing an age factor 
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which assisted in detecting data set changes updating the clustering model. Our experimental evaluation and 
comparison showed that the algorithm allows effective clustering with efficient transmission costs, while being 
scalable and efficient. GD Cluster can be customized for other clustering types, such as hierarchical or grid-
based clustering. To accomplish this, representatives can be organized into a hierarchy, or carry statistics of 
approximate grid cells. Further discussion of these algorithms is deferred to future work. 
 

REFERENCES 

 
[1] K. M. Hammouda and M. S. Kamel, “Hierarchically distributed peer-to-peer document clustering and 

cluster summarization,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 5, pp. 681–698, May 2009. 
[2] Y. Pei and O. Za€ıane, “A synthetic data generator for clustering and outlier analysis,” Dept. Comput. 

Sci., Univ. Alberta, Edmonton, AB,Canada, Tech. Rep. TR06-15, 2006. 
[3] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, “The sequoia 2000 storage benchmark,” in ACM 

SIGMOD Rec., vol. 22, no. 2, pp. 2–11, 1993. 
[4] N. Visalakshi and K. Thangavel, “Distributed data clustering: A comparative analysis,” in Foundations 

Computational Intelligence, vol. 206, A. 
[5] Abraham, A.-E. Hassanien, A. de Leon, F. de Carvalho, and V. Snasel, Eds, Berlin, Germany: Springer-

Verlag, 2009, pp. 371–397. 
[6] N. F. Samatova, G. Ostrouchov, A. Geist, and A. V. Melechko, “RACHET: An efficient cover-based 

merging of clustering hierarchies from distributed datasets,” Distrib. Parallel Databases, vol. 11, pp. 
157–180, Mar. 2002. 

[7] M. Eisenhardt, W. Muller, and A. Henrich, “Classifying documents by distributed P2P clustering,” in 
Proc. Informatik, Sep. 2003, pp. 286 291. 

[8] R. Wolff, K. Bhaduri, and H. Kargupta, “A generic local algorithm for mining data streams in large 
distributed systems,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 4, pp. 465–478, Apr. 2009. 

[9] K. Tasoulis and M. N. Vrahatis, “Unsupervised distributed clustering,” in Proc. IASTED Int. Conf. 
Parallel Distrib. Comput. Netw., 2004, pp. 347–351. 

[10] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Approximated clustering of distributed high-
dimensional data,” in Proc. 9th Pacific-Asia Conf. Adv. Knowl. Discovery Data Min., 2005, pp. 432–441. 

[11] L. M. Aouad, N.-A. Le-Khac, and T. M. Kechadi, “Lightweight clustering technique for distributed data 
mining applications,” in Proc. 7th Int. Conf. Data Mining, 2007, pp. 120–134. 

[12] S. Merugu and J. Ghosh, “A privacy-sensitive approach to distributed clustering,” Pattern Recognit. 
Lett., vol. 26, no. 4, pp. 399–410, 2005. 

[13] A. Elgohary, “Scalable embeddings for kernel clustering on mapreduce,” M.Sc. Thesis, Electrical and 
Computer Engineering, Univ. Waterloo, Waterloo, ON, Canada, 2014. 

[14] Eyal, I. Keidar, and R. Rom, “Distributed data clustering in sensor networks,” Distrib. Comput., vol. 24, 
no. 5, pp. 207–222, 2011. 

[15] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino, “Fault tolerant decentralised k-means clustering for 
asynchronous large-scale networks,” J. Parallel Distrib. Comput., vol. 73, no. 3, pp. 317–329, 2013. 

[16] P. Shen and C. Li, “Distributed information theoretic clustering,” IEEE Trans. Signal Process., vol. 62, 
no. 13, pp. 3442–3453, Jul. 1, 2014 

 


