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ABSTRACT 
 
  A quantitative structure- property relationship (QSPR) was performed for the prediction of the boiling 
points of hydrocarbons which consists of alkanes, alkenes, dienes, alkynes, cycloalkanes, and cycloalkenes. The 
entire set of 165 compounds was divided into a training set of 125 hydrocarbons and a test set of 40 
compounds.  A five descriptor model, with squared correlation coefficient (R2) of 99.80% and standard error of 
estimation (s) of 4.67, was developed by applying multiple linear regression analysis using the ordinary least 
square regression method and genetic algorithm- variable subset selection. The reliability of the proposed 
model was further illustrated using various evaluation technics: leave- one- out cross- validation, bootstrap, 
randomization tests, and validation through the test set. 
Keywords: Hydrocarbons-Boiling points- QSPR-Molecular Descriptors- Multiple Linear Regression. 
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INTRODUCTION 
 
Boiling point Bp is one of the most important physical property, used to describe the volatility of a 

compound (its presence in the atmospheric environment), defined as the temperature at which the vapor 
pressure of a pure saturated liquid is 760 mmHg [1]. Also, to estimate other properties such as critical 
temperatures, vapor pressure and flash points [2-4]. 
 

For many hydrocarbons, the values of boiling point are not available in the literature. Their 
experimental measurement is expensive, consumes a long time and it requires pure compounds. Moreover, 
the compounds of high molecular weight decompose before reaching their boiling points and require 
measures under reduced pressure and subsequent correction for atmospheric pressure. Therefore, the direct 
measurement of the boiling point of the organic compound is laborious [5]. 
 

The aim of the present work is to develop a robust QSPR[6] model that could predict the boiling point 
values for a diverse set of hydrocarbons (which consists of alkanes, alkenes, dienes, alkynes, cycloalkanes, and 
cycloalkenes) using the general molecular descriptors computed with the help of DRAGON software  [7].  
 

In this study, we present a new QSPR model for the prediction of the boiling point of a set of 165 
hydrocarbons. Our goal is to develop an accurate, simple, fast, and less expensive method for calculation of 
boiling point values. The predictive power of resulting model is demonstrated by testing it on test data that 
were not used during model generation 
 

METHODS 
 
Experimental Data  
 

The experimental Bp values (K) of 165 selected, structurally heterogeneous, hydrocarbons  were 
taken from the literature  [8]. The boiling point values span between 111.6 and 628.12K (Table 1). The detailed 
structures of all studied compounds are available as Supporting Information. 
 
Descriptor Generation   
 

The chemical structure of each compound was sketched on a PC using the HYPERCHEM program [9] 
and preoptimized using MM+ molecular mechanics method (Polack- Ribiere algorithm). The final geometries of 
the minimum energy conformation were obtained by the semi-empirical PM3 method at a restricted Hartree- 
Fock level with no configuration interaction, applying a gradient norm limit of 0.01 kcal. Ǻ-1.mol-1 as a stopping 
criterion. Then the geometries were used as input for the generation of 1664 descriptors from 20 different 
classes such as Constitutional, Topological, Geometrical, Charge, GETAWAY (Geometry, Topology and Atoms-
Weighted Assembly), WHIM (Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE (3D-Molecular 
Representation of Structure based on Electron diffraction), and Molecular Walk Counts using Dragon software 
(version 5.4) [7]. 
 

Constant values and descriptors found to be correlated pairwise were excluded in a pre-reduction 
step (when there was more than 98% pairwise correlation, one variable was deleted), and the genetic 
algorithm was applied for variables selection to a final set of 1230 descriptors. 
 
Selection of the training and test sets It is important to rationally define a training set from which the model is 
built and external test set on which to evaluate its prediction power. The object of this selection should be to 
generate two sets with similar molecular diversity, in order to be reciprocally representative and to cover all 
the main structural and physicochemical characteristics of the global data set. 
 

Several procedures can be adopted for the selection of the training and test sets, the later should 
contain between 15 and 40% of the compounds in the full data set. 
 

The Duplex algorithm [10] was applied in this study to separate data into two independent subsets: a 
training set of – compounds to build the model and a test set of the remained- compounds to evaluate its 
prediction ability. 
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The algorithm begin with a list of the n (=165) observations where the k regressors are standardized 

to unit length; that is,  
 

                           (1) 

 
Where   is the corrected sum of squares of the jth regressor. The standardized 

regressors are then orthonormalized. This can be done by factoring the Z ̰’Z ̰   matrix as:  
 

Z ̰’Z ̰=T̰’T̰                                 (2) 
 

Where T̰’ is unique k×k upper triangular matrix. The elements of T̰ can be found using the square root 
or cholesky method [11]. Then make the transformation  

 
W ̰=Z ̰ T̰-1                                                  (3) 

 
Resulting in a new set of variables (the w’s) that are orthogonal and have unit variance. Then the 

Euclidian distance between all possible pairs of points is calculated. The two points which are farthest apart 
are assigned to the estimation set. The two points in the remaining list which are farthest are assigned to the 
prediction set. At the third step the point which is farthest from the two points in the estimation set is added 
to the estimation set. At the fourth step the point which is farthest from the two points in the prediction set is 
included in the prediction set. The alternation between the estimation and the prediction set continues until 
all points in the list have been assigned to one of the two sets. Of course, once a point is assigned to a set, it is 
deleted from further consideration. 
 

This algorithm was applied in the present study to separate data into two independent subsets: a 
training set of 125 compounds to build the model and a test set of the remained 40 compounds to evaluate its 
prediction ability.  
 
Model Development and Validation 
 

Multiple linear regression analysis (MLR) and variable selection were performed by the software 
MobyDigs [12] using the Ordinary Least Square regression (OLS) method and Genetic Algorithm-Variable 
Subset Selection (GA-VSS) [13]. 
 

The outcome of the application of the genetic algorithms is a population of 100 regression models, 
ordered according to their decreasing internal predictive performance, verified by Q2. The models with lower 
Q2 are those with fewer descriptors. First of all, models with 1-2 variables were developed by the all – subset – 
method procedure in order to explore all the low dimension combinations. The number of descriptors was 
subsequently increased one by one, and new models were formed. The best models are selected at each rank, 
and the final model must be chosen from among them. This has to be sufficiently correlated and, at the same 
time, protect against any over parameterization, which would lead to a loss of predictive power for molecules 
outside training set. From a statistical view point the ratio of the number of samples (n) to the number of 
descriptors (m) should not be too low. Usually, it is recommended that   n/ m ≥ 5 [14]. The GA was stopped 
when increasing the model size did not increase the Q2 value to any significant degree. Particular attention was 
paid to the collinearity of the selected molecular descriptors: by applying the QUIK rule (Q Under Influence of 
K) [15] a necessary condition for the model validity. Acceptable model is only that with a global correlation of 
[x + y] block (Kxy) greater than the global correlation of the x block (Kxx) variable, x being the molecular 
descriptors and y the response variable.  
 

The collinearity in the original set of molecular descriptors results in many similar models that more or 
less yield the same predictive power (in MOBYDIGS software 100 models of different dimensionality). 
Therefore, when there were models of similar performance, those with higher ∆K (Kxy- Kxx) were selected and 
further verified. 
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In this work, the “breaking point” rule was used to manage this problem. This method consists of 
analysing the improvement in the correlation with the number of variables in the model. By plotting the R² 
values as functions of the number of descriptors, asymptotic behavior was observed, and the improvement in 
the correlation became less significant after a certain rank (∆R²<0.02-0.03). At this point (the “breaking point”), 
the model is considered to be optimal, representing the best compromise between correlation and 
parameterization. 
 

The models were justified by the R², the adjusted R², the external , the F ratio values, the 
standard error of estimation s and the significance level value p. the R² and adjusted R² were calculated using 
the following formula: 

                    (4) 

 

                                         (5) 

 
Where N is the number of members of the training set and M is the number of descriptors involved in 

the correlation. The adjusted R² is a better measure of the proportion of variance in the data explained by the 
correlation than R², because R² is somewhat sensitive to changes in N and M. The adjusted R² corrects for the 
artificiality introduced when M approaches N through the use of a penalty function which scales the result. A 
variance inflation factor (VIF) was calculated to test if multicollnearities existed among the descriptors, which 
is defined as: 

 

                                 (6) 

 
Where  is the squared correlation coefficient between the jth coefficient regressed against all the 

other descriptors in the model. Models would not be accepted if they contain descriptors with VIFs above a 
value of five. 
 

Randomization tests were also carried out to prove the possible existence of chance correlation. To 
do this, the dependent variable was randomly scrambled and used in the experiment. Models were then 
investigated with all members in the descriptor pool to find the most predictive models. The resulting models 
obtained on the training set with the randomized IR values should have significantly lower R² values than the 
proposed one because the relationship between the structure and property is broken. This is a proof of the 
proposed model’s validity as it can be reasonably excluded that the originally proposed mode was obtained by 
chance correlation. 
 

Validation of the models was further performed by using the external test set composed of data not 
used to develop the prediction model. The  is determined with Eq. (7): 

 

   
ext trn n

2 22

ext i (i) ext i tr tr

i=1 i=1

ˆQ =1-[( y - y / n ) / ( y - y / n )]                           (7) 

 
Here next and ntr are the number of objects in the external set (or left out by bootstrap) and the 

number of training set objects, respectively. 
 

According to Golbraikh et al, [16,17] a QSPR model can provide an acceptable prediction if it verifies 
the following conditions: 

 
                                                                (8-a) 

                                                                (8-b) 
  or                                                      (8-c) 

0.85 < k < 1.15           or     0.85 < k’ < 1.15                                                       (8-d) 
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r² is the correlation coefficient between the calculated and experimental values in the test set; r²0 
(calculated versus observed versus) and r’²0 (observed versus calculated values ) are the coefficients of 
determination ; k, k’ are slopes of the regression lines through the origin of calculated versus observed and 
observed versus respectively.  
 
Here 
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ŷy
k

                                                                               (9-d) 





2

i

ii

ŷ
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Where  and are defined as kyr0ŷ and yk ˆ'y r0  , respectively. 

 
The reason to use  and require k values that are chose to 1 is that when actual versus predicted 

retention indices are compared, an exact fit is required, not just a correlation. 
 

The robustness of the models and their predictivity were evaluated by both 2

LOOQ and bootstrap. In 

this last procedure K n-dimensional groups are generated by a randomly repeated selection of n- objects from 
the original data set.  
 

The model obtained on the first selected objects is used to predict the values for the excluded sample, 
and then Q2 is calculated for each model. The bootstrapping was repeated 8000 times. 
 

The proposed model was also checked for reliability and robustness by permutation testing: new 
models are recalculated for randomly recorded response (Y- scrambling) by using the same original 
independent variable matrix. After repeating this test several times (100 times in this work) it is expected to 
obtain new models that have significantly lower R2 and Q2 than the original model. If this condition is not 
verified the original model is not acceptable, as it was due to a chance correlation or a structural redundancy 
in the training set.  
 

Obtaining a robust model does not give real information about its prediction power. This is evaluated 
by predicting the compounds included in the test set. 
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Analysis  
 

The applicability domain (AD) [18,19] is a theoretical region in the space defined by the descriptors of 
the model and the modeled response, for which a given QSPR should make reliable predictions. In this work, 
the structural AD was verified by the leverage (hii) approach [20]. 
 

The warning leverage 
*h is, generally, fixed at 3(m + 1)/n , where n is the total number of samples 

in the training set and m is the number of descriptors involved in the correlation.  
 

The presence of both the response outliers (Y outliers) and the structurally influential compounds (X 
outliers) was verified by the Williams plot [21], the plot of standardized residuals versus leverage values.  
 

Table 1: Experimental and calculated Bp for the studied compounds 
 

N Sample 

Descriptors Boiling Point 

MAXDN VEv1 HATS5u H6m R1p+ Expt. 
Bp 

Calc. 
Bp 

Residual 

1 Methane 0 1 0 0 0 111.6 102.67 8.93 

2 Ethylene 0 1.414 0 0 0.059 169.4 188.41 -19.01 

3 Ethane 0 1.414 0 0 0.059 184.5 188.41 -3.91 

4 Acetylene 0 1.414 0 0 0.057 188.4 187.62 0.78 

5 Propylene 0.25 1.715 0 0 0.076 225.5 232.59 -7.09 

6 Propane 0.25 1.716 0 0 0.061 231 227.46 3.54 

7 Propadiene 0.25 1.716 0 0 0.072 238.7 231.37 7.33 

8 Cyclopropane 0 1.732 0 0 0.072 240.3 243.14 -2.84 

9 Propyne 0.347 1.714 0 0 0.099 249.9 236.76 13.14 

10 Isobutane 0.5 1.972 0 0 0.059 261.4 258.11 3.29 

11 isobutylene 0.5 1.969 0 0 0.068 266.2 260.74 5.46 

12* But-1-ene 0.417 1.978 0.613 0 0.067 266.9 270.04 -3.14 

13* Buta-1,3-diene 0.361 1.985 0.331 0 0.062 268.7 268.98 -0.28 

14 Butane 0.181 1.974 0.658 0 0.056 272.6 274.72 -2.12 

15 E-But-2-ene 0 1.964 1.195 0 0.067 274 288.01 -14.01 

16 Z-But-2-ene 0 1.964 1.062 0 0.068 276.9 287.36 -10.46 

17* vinylacetylene 0.597 1.987 0.288 0 0.097 278.1 272.25 5.85 

18 But-1-yne 0.653 1.978 0.508 0 0.107 281.2 274.2 7 

19 2,2-Dimethylpropane 0.75 2.204 0 0 0.051 282.6 282.79 -0.19 

20 3,3-Dimethylhexane 0.658 2.779 0.997 0.002 0.044 284.00 286.17 -2.17 

21* Cyclobutane 0 2 0 0 0.057 285.7 280.21 5.49 

22* 3-Methyl but-1-ene 0.685 2.206 0.9 0 0.072 293.3 300.14 -6.84 

23 Penta-1,4-diene 0.583 2.217 0.348 0 0.059 299.1 296.69 2.41 

24 But-2-yne 0.181 1.959 1.956 0 0.071 300.1 288.43 11.67 

25 Isopentane 0.449 2.202 0.88 0 0.057 301 303.06 -2.06 

26 Pent-1-ene 0.347 2.209 0.644 0 0.063 303.1 308.02 -4.92 

27 2-Methyl but-1-ene 0.412 2.2 1.011 0 0.062 304.3 306.93 -2.63 

28 2-Methyl buta-1,3-diene 0.648 2.207 0.903 0 0.082 307.2 305.29 1.91 

29 Pentane 0.156 2.204 0.806 0.001 0.054 309.2 312.31 -3.11 

30* E-pent-2-ene 0.337 2.196 0.918 0.002 0.063 309.5 308.16 1.34 

31 Z-pent-2-ene 0.337 2.196 0.795 0.001 0.06 310.1 306.19 3.91 

32 2-Methyl but-2-ene 0.287 2.191 1.36 0 0.063 311.7 313.41 -1.71 

33 Pent-1-yne 0.583 2.21 0.419 0 0.098 313.3 309.6 3.7 

34 3-Methyl buta-1,2-diene 0.523 2.194 1.453 0 0.086 314 313.86 0.14 
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35* 3,3-Dimethyl but-1-ene 0.944 2.417 0.862 0 0.069 314.4 322.72 -8.32 

36 E-penta-1,3-diene 0.25 2.202 0.748 0 0.083 315.2 318.25 -3.05 

37 cyclopentene 0.181 2.234 0 0 0.07 317.4 315.1 2.3 

38 Penta-1,2-diene 0.455 2.202 0.635 0.001 0.083 318 309.33 8.67 

39 Cyclopentane 0 2.236 0 0 0.049 322.4 314.88 7.52 

40* 2,2-Dimethylbutane 0.708 2.411 0.914 0 0.051 322.9 324.57 -1.67 

41* 2,3-Dimethyl but-1-ene 0.676 2.411 1.385 0 0.068 328.8 335.57 -6.77 

42 Z-4-Methyl pent-2-ene 0.616 2.407 0.739 0.002 0.058 329.6 327.97 1.63 

43 2,3-Dimethylbutane 0.481 2.412 1.295 0 0.052 331.1 336.84 -5.74 

44* E-4-Methyl pent-2-ene 0.616 2.407 0.689 0.002 0.065 331.7 329.79 1.91 

45 Hexa-1,5-diene 0.441 2.426 0.732 0.001 0.057 332.6 337.28 -4.68 

N Sample 

Descriptors Boiling Point 

MAXDN VEv1 HATS5u H6m R1p+ Expt. Bp Calc. Bp Residual 

46 2-Methylpentane 0.435 2.412 0.762 0.001 0.054 333.4 334.51 -1.11 

47* 3- Methylpentane 0.398 2.409 1.226 0.001 0.054 336.4 339.14 -2.74 

48 Hex-1-ene 0.323 2.418 0.721 0.001 0.062 336.6 341.85 -5.25 

49 Z-Hex-3-ene 0.326 2.403 0.637 0.004 0.052 339.6 334.66 4.94 

50* E-Hex-3-ene 0.326 2.403 0.613 0.003 0.056 340.3 335.91 4.39 

51 2-Methyl pent-2-ene 0.331 2.401 0.858 0.002 0.061 340.5 339.59 0.91 

52* Z-3-Methyl pent-2-ene 0.309 2.4 1.429 0.001 0.051 340.9 341.69 -0.79 

53 E-Hex-2-ene 0.267 2.408 0.635 0 0.06 341 341.32 -0.32 

54 Hexane 0.145 2.412 0.712 0.003 0.047 341.9 341.92 -0.02 

55* Z-Hex-2-ene 0.267 2.408 0.661 0.003 0.056 342 339.44 2.56 

56 E-3-Methyl pent-2-ene 0.309 2.4 1.368 0.001 0.058 343.6 343.74 -0.14 

57 Methylcyclopentane 0.287 2.431 0.558 0 0.053 344.9 341.16 3.74 

58 2,3-Dimethyl but-2-ene 0.241 2.4 1.74 0 0.051 346.4 347.21 -0.81 

59 1-Methylcyclopentene 0.175 2.423 0.83 0 0.057 348.95 347.7 1.25 

60 2,3,3-Trimethyl but-1-ene 0.944 2.607 1.423 0 0.052 351 351.62 -0.62 

61 2,2-Dimethylpentane 0.7 2.604 0.654 0.001 0.048 352.3 352.08 0.22 

62 2,4-Dimethylpentane 0.458 2.607 0.671 0.004 0.048 353.6 360.76 -7.16 

63* Cyclohexane 0 2.449 0.554 0 0.046 353.9 352.03 1.87 

64 2,2,3-Trimethylbutane 0.75 2.607 1.376 0 0.047 354 356.67 -2.67 

65 Cyclohexene 0.181 2.448 0.515 0 0.063 356.1 350.84 5.26 

66 3,3-Dimethylpentane 0.667 2.601 1.291 0 0.045 359.2 357.39 1.81 

67* 1,1Dimethylcyclopentane 0.556 2.62 0.812 0 0.053 361 363.05 -2.05 

68 2,3-Dimethylpentane 0.468 2.603 1.282 0.001 0.049 362.9 366.12 -3.22 

69 2-Methylhexane 0.431 2.605 0.594 0.004 0.052 363.2 362.34 0.86 

70 E-1,2-dimethylcyclopentane 0.319 2.616 1.055 0 0.048 365 371.67 -6.67 

71* 3-Methylhexane 0.384 2.601 0.964 0.002 0.051 365 366.52 -1.52 

72* 3-Ethylpentane 0.347 2.598 1.241 0.003 0.052 366.6 369.85 -3.25 

73 Hept-1-ene 0.312 2.61 0.701 0.003 0.061 366.8 371.76 -4.96 

74 Heptane 0.139 2.604 0.642 0.004 0.046 371.6 371.31 0.29 

75* 2,2,4-Trimethylpentane 0.728 2.788 0.589 0.005 0.044 372.4 377.25 -4.85 

76 Z-1,2-Dimethylcyclopentane 0.319 2.616 1.166 0 0.051 372.7 373.64 -0.94 

77 Methylcyclohexane 0.297 2.629 0.776 0 0.048 374.1 372.19 1.91 

78 Ethylcyclopentane 0.236 2.614 0.798 0.001 0.055 376.6 374.43 2.17 

79 1,1,3-Trimethylcyclopentane 0.584 2.792 0.789 0.001 0.046 378 386.53 -8.53 

80 1-Ethylcyclopentene 0.222 2.605 0.943 0.001 0.058 379.45 375.78 3.67 

81* 2,2,3,3-Tetramethylbutane 0.813 2.789 1.564 0 0.037 379.6 381.06 -1.46 



ISSN: 0975-8585 

November–December 2017  RJPBCS  8(6)  Page No. 258 

82 2,2-Dimethylhexane 0.698 2.784 0.464 0.006 0.048 380 377.81 2.19 

83 2,5-Dimethylhexane 0.447 2.788 0.525 0.011 0.043 382.3 385.32 -3.02 

84* 2,4-Dimethylhexane 0.454 2.784 0.778 0.005 0.047 382.6 389.37 -6.77 

85* 2,2,3-Trimethylpentane 0.741 2.784 1.269 0.001 0.045 383 382.97 0.03 

86 3,3-Dimethylhexane 0.658 2.779 0.997 0.002 0.044 385.1 382.56 2.54 

87* 2,3,4-Trimethylpentane 0.491 2.785 1.246 0.002 0.048 386.6 392.98 -6.38 

88 1,1,2-Trimethylcyclopentane 0.597 2.795 1.386 0 0.048 386.9 392.29 -5.39 

89 2,3,3-Trimethylpentane 0.708 2.783 1.536 0 0.042 387.9 385.67 2.23 

90 2,3-Dimethylhexane 0.463 2.782 1.007 0.004 0.045 388.8 390.19 -1.39 
 

N Sample 

Descriptors Boiling Point 

MAXDN VEv1 HATS5
u 

H6m R1p+ Expt. Bp Calc. 
Bp 

Residual 

91* 3-Ethyl-2-methylpentane 0.454 2.779 1.221 0.005 0.046 388.8 391.96 -3.16 

92* 2-Methylheptane 0.429 2.785 0.511 0.007 0.05 390.8 388.58 2.22 

93 3,4-Dimethylhexane 0.417 2.78 1.273 0.003 0.044 390.9 393.71 -2.81 

94* 4-Methylheptane 0.37 2.779 0.791 0.004 0.049 390.9 392.72 -1.82 

95 3-Ethyl-3-methylpentane 0.625 2.777 1.479 0.001 0.051 391.4 390.17 1.23 

96* Cycloheptane 0 2.646 0.902 0 0.046 391.6 386.23 5.37 

97 3-Ethylhexane 0.333 2.776 0.949 0.004 0.051 391.7 395.63 -3.93 

98* 3-Methylheptane 0.37 2.779 0.791 0.004 0.049 392.1 392.72 -0.62 

99 E-1,4-Dimethylcyclohexane 0.314 2.797 0.865 0.001 0.041 392.5 396.22 -3.72 

100* 1,1-Dimethylcyclohexane 0.571 2.804 0.943 0 0.047 392.7 390.6 2.1 

101* Z-1,3-Dimethylcyclohexane 0.321 2.802 0.877 0 0.048 393.3 399.33 -6.03 

102* Oct-1-ene 0.306 2.788 0.641 0.005 0.06 394.4 398.62 -4.22 

103 1-Ethyl-1-methylcyclopentane 0.514 2.791 1.174 0.001 0.055 394.7 395.29 -0.59 

104 2,2,4,4-Tetramethylpentane 0.766 2.96 0.547 0.009 0.039 395.4 400 -4.6 

105 E-1,2-Dimethylcyclohexane 0.33 2.802 1.142 0 0.045 396.6 400.36 -3.76 

106 2,2,5-Trimethylhexane 0.718 2.958 0.397 0.015 0.043 397.2 400.14 -2.94 

107* Z-1,4-Dimethylcyclohexane 0.314 2.797 0.865 0.001 0.041 397.5 396.22 1.28 

108 E-1,3-Dimethylcyclohexane 0.321 2.802 0.963 0.001 0.047 397.6 399.64 -2.04 

109 E-Oct-2-ene 0.232 2.784 0.643 0.005 0.048 398.1 396.78 1.32 

110* Octane 0.135 2.782 0.582 0.006 0.043 398.8 397.41 1.39 

111 Isopropylcyclopentane 0.391 2.795 0.927 0.001 0.048 399.6 395.99 3.61 

112* 2,2,4-Trimethylhexane 0.727 2.955 0.617 0.009 0.046 399.7 403.65 -3.95 

113 Z-1,2-Dimethylcyclohexane 0.33 2.802 1.172 0 0.048 402.9 401.47 1.43 

114 Propylcyclopentane 0.222 2.789 0.622 0.003 0.051 404.1 399.27 4.83 

115* Ethylcyclohexane 0.247 2.797 0.913 0.001 0.049 404.9 401.85 3.05 

116 2,2-Dimethylheptane 0.699 2.954 0.375 0.01 0.046 405.8 402.25 3.55 

117 2,2,3,4-Tetramethylpentane 0.77 2.956 1.177 0.004 0.042 406.2 406.74 -0.54 

118* 2,2,3-Trimethylhexane 0.74 2.951 0.986 0.005 0.046 406.8 406.59 0.21 

119 2,2,5,5-Tetramethylhexane 0.743 3.122 0.337 0.026 0.035 410.6 419.05 -8.45 

120 2,2,3,3-Tetramethylpentane 0.804 2.954 1.564 0.001 0.043 413.4 409.49 3.91 

121 1,E-3,5-Trimethylcyclohexane 0.344 2.967 0.845 0.001 0.046 413.7 423.53 -9.83 

122 2,3,3,4-Tetramethylpentane 0.75 2.954 1.561 0.002 0.038 414.7 409.5 5.2 

123 2-Methyloctane 0.429 2.954 0.459 0.008 0.048 416.4 414.1 2.3 

124 3,3-Diethylpentane 0.583 2.943 1.441 0.004 0.049 419.3 416.23 3.07 

125 Non-1-ene 0.302 2.956 0.592 0.007 0.056 420 423.22 -3.22 

126 Cyclooctane 0 2.828 0.933 0 0.044 422 414.57 7.43 

127 Nonane 0.133 2.951 0.536 0.007 0.041 424 422.88 1.12 
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128 Isopropylcyclohexane 0.398 2.965 0.947 0.003 0.044 427.7 420.91 6.79 

129 3,3,5-Trimethylheptane 0.685 3.111 0.82 0.011 0.046 428.8 431.09 -2.29 

130 Propylcyclohexane 0.233 2.959 0.72 0.002 0.048 429.9 425.77 4.13 

131 2,2,3,3-Tetramethylhexane 0.803 3.11 1.224 0.006 0.043 433.5 430.13 3.37 

132 Deca-1,3-diene 0.286 3.114 0.514 0.012 0.069 442 451.41 -9.41 

133 Dec-1-ene 0.299 3.115 0.548 0.008 0.054 443.7 447.17 -3.47 

134 Isobutylcyclohexane 0.414 3.122 0.602 0.007 0.045 444.5 441.62 2.88 

135* tert-Butylcyclohexane 0.68 3.127 0.949 0.005 0.042 444.7 434.94 9.76 

N Sample 

Descriptors Boiling Point 

MAXDN VEv1 HATS5
u 

H6m R1p+ Expt. Bp Calc. Bp Residual 

136 Decane 0.131 3.11 0.502 0.008 0.04 447.3 447.38 -0.08 

137 sec-Butylcyclohexane 0.347 3.119 0.947 0.011 0.045 452.5 445.57 6.93 

138 Butylcyclohexane 0.228 3.116 0.586 0.005 0.048 454.1 448.92 5.18 

139 Undec-1-ene 0.298 3.266 0.512 0.01 0.051 465.8 469.26 -3.46 

140 Undecane 0.13 3.261 0.471 0.01 0.038 469.1 469.86 -0.76 

141 Hexylcyclopentane 0.216 3.268 0.404 0.006 0.052 476.3 473 3.3 

142 Dodec-1-ene 0.297 3.41 0.481 0.013 0.049 486.5 490.39 -3.89 

143 Dodecane 0.129 3.406 0.448 0.012 0.037 489.5 491.8 -2.3 

144 Heptylcyclopentane 0.216 3.414 0.375 0.008 0.05 497.3 494.66 2.64 

145 Tridec-1-ene 0.296 3.549 0.455 0.021 0.045 505.9 508.68 -2.78 

146 Tridecane 0.128 3.544 0.425 0.022 0.035 508.6 510.38 -1.78 

147 Octylcyclopentane 0.217 3.553 0.351 0.011 0.051 516.9 516.02 0.88 

148 Tetradec-1-ene 0.295 3.682 0.433 0.035 0.044 524.3 525.85 -1.55 

149 Tetradecane 0.128 3.678 0.407 0.036 0.034 526.7 527.5 -0.8 

150 Nonylcyclopentane 0.217 3.687 0.341 0.017 0.048 535.3 534.65 0.65 

151 Pentadec-1-ene 0.295 3.811 0.412 0.051 0.041 541.5 541.2 0.3 

152 Pentadecane 0.128 3.807 0.389 0.051 0.032 543.8 543.68 0.12 

153 Decylcyclopentane 0.218 3.816 0.324 0.021 0.048 552.5 553.9 -1.4 

154 Hexadec-1-ene 0.294 3.935 0.395 0.067 0.04 558 556.76 1.24 

155 Hexadecane 0.127 3.932 0.375 0.066 0.031 560 559.43 0.57 

156* Decylcyclohexane 0.228 3.94 0.383 0.031 0.046 570.8 570.32 0.48 

157 Heptadecane 0.127 4.052 0.36 0.082 0.03 575.2 574.11 1.09 

158* Dodecylcyclopentane 0.218 4.062 0.303 0.047 0.048 584.1 586.16 -2.06 

159 Octadec-1-ene 0.294 4.173 0.364 0.099 0.036 588 585.1 2.9 

160 Octadecane 0.127 4.17 0.348 0.096 0.029 589.5 588.97 0.53 

161 Tridecylcyclopentane 0.219 4.179 0.3 0.063 0.046 598.6 600.32 -1.72 

162* 1-Cyclopentyltetradecane 0.219 4.294 0.286 0.08 0.046 599 614.06 -15.06 

163 Nonadecane 0.127 4.284 0.336 0.111 0.028 603.1 602.96 0.14 

164 Eicosane 0.126 4.395 0.325 0.125 0.026 617 616.42 0.58 

165 1-Cyclopentylpentadecane 0.22 4.405 0.284 0.094 0.045 625 628.12 -3.12 
 

RESULTS AND DISCUSSION 
 
Results of the MLR Model  
 

A multiple linear regression (MLR) was employed to describe the relation between critical properties 
and their molecular descriptors. The best model and the number of descriptors (p) in the final QSPR model was 
determined on the basis of the correlation coefficient R². At first, the optimal p is tested using p= 2 to 8. An 
increase of the R² value less than 0.02 was chosen as a threshold.  Figure. 1 shows the application of the 
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breaking point criterion [22] in the present case suggest a best five-parameters equation was obtained, which 
is as the following: 
 

Bp = - 56.17+157.85 VEv1 – 34.74 MAXDN +7.62 HATS5u - 231.67 H6m + 360.75 R1p+      (10) 
 

R2= 99.77%   R2
adj= 99.80%   Q2

LOO = 99.73%         Q2
EXT =99.57%        Q2

BOOT =99.61%                 s = 4.79       
F = 10423.55    K xx= 41                    Kxy = 50.27 

 
Here, VEV1 is the eigenvector coefficient sum from van der Waals weighted distance matrix; MAXDN 

is the maximal electrotopological negative variation  [23,24] ; HATS5u is the leverage-weighted autocorrelation 
of lag 5 / unweighted  [25,26] ; H6m is the H autocorrelation of lag 6 / weighted by atomic masses ; R1p+ is the 
R maximal autocorrelation of lag 1 / weighted by atomic polarizabilities  [25,26]  
 

More information about these descriptors can be found in [27] and the references therein. 
 

The results for the randomized models can be compared with the real starting one only by 

representing in a plot the statistical coefficients 
2R and

2Q
. This is depicted in figure. 2. The statistics for the 

modified Bp vectors are clearly lower than the real QSPR model. This ensures that a real structure-property 
relationship has been found out. 
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Figure 1: Breaking point rule for determination of the optimum number of the descriptors 
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Figure 2: Randomization test associated to previous QSPR model. Black circles represent the randomly 
ordered, and star corresponds to the real boiling points. 
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Some important statistical parameters (as given in table 2) were used to evaluate the involved 

descriptors. The t -value of a descriptor measures the statistical significance of the regression coefficients. The 

high absolute t -values shown in table 2 express that the regression coefficients of the descriptors involved in 

the MLR model are significantly larger than the standard deviation. The t -probability of a descriptor can 
describe the statistical significance when combined together within an overall collective QSPR model (i. e., 

descriptor’s interactions). Descriptors with t -probability values below 0.05 (95% confidence) are usually 
considered statistically significant in a particular model, which means that their influence on the response 

variable is not merely by chance [28]. The smaller t -probability suggests the more significant descriptor. The 
t -probability values of the five descriptors are very small, indicating that all of them are highly significant 
descriptors. The VIF values suggest that these descriptors are weakly correlated with each others. Thus, the 
model can be regarded as an optimal regression equation. 
 

For the training and test set are showed in table 1 and figure. 2. Regression lines were used for 
comparing the values obtained by this model with experimental values. As can be seen from figure. 3, the 
calculated slope and intercept (a=0.998 ; b=0.88 ) did not differ greatly from the "ideal" values of 1 and 0, 
respectively, and most of the predicted Bp values agreed, for all the training and testing sets. Thus, model has 
been developed that calculate the Bp values for hydrocarbons with accuracy comparable to experiment. 
 

The distribution of errors for the entire data set is given in figure. 4. Residuals are distributed normally 
around zero (the mean value) as can be clearly seen from the histogram in the right side of the plot,  
 

Table 2: Characteristics of the selected descriptors in the best MLR model 
 

Descriptor Descriptor type X Dx t- value t- probability VIF 

Constant   -56.17 3.96 -14.20 0  

VEv1 Eigenvalue-based indices 157.85 1.13 140.32 0 3.03 

MAXDN Topological descriptors -34.74 2.21 -15.72 0 1.24 

HATS5u GETAWAY descriptors 7.62 1.13 6.75 0 1.30 

H6m GETAWAY descriptors -231.67 30.08 -7.70 0 2.86 

R1p+ GETAWAY descriptors 360.75 35.64 10.12 0 1.50 

 

 
 

Figure 3:  Plot of predicted vs. experimental Bp for the entire data set. 
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Figure 4: Plot of residual vs. experimental Bp for the entire data set. 
 
Descriptor Contribution Analysis and Interpretation 
 

Based on a previously described procedure [29, 30], the relative contribution of the five descriptors to 
the model were determined and they decrease in the following order: VEv1(67.01%) > MAXDN(11.36%) > 
HATS5u (07.50%) > H6m (07.29%) > R1p+ (06.84%) . It should be noted that the difference in the descriptor 
contribution between the three last descriptors used in the model is not significant, but the first one had a 
very high contribution indicating that these descriptor is indispensable in generating the predictive model 
(Figure.5). 
 

 
 

Figure 5: Relative contributions of the selected descriptors to the MLR model. 
 

The first important descriptor is VEv1, which has a relatively very high positive correlation with the 
experimental Bp values (R= 99.95%). The positive coefficient of VEv1 indicates that the hydrocarbons with 
larger values for this descriptor would have higher Bp values. 
 

The second important descriptor is MAXDN, a topological descriptor, which has a smaller negative 
correlation coefficient with the experimental Bp values (R= -10%). The electrotopological state indices are 
atomic indices calculated from a H-depleted molecular graph as: 

 

 
 




A

j
k

ij

ji

iiii
d

II
IIIS

1 1
                              (11)

 

 
 where Ii is the intrinsic state of the ith atom and ∆Ii is the field effect on the ith atom calculated as 

perturbation of the intrinsic state of ith atom by all other atoms in the molecule, the MAXDN is calculated as 
the maximum negative value of ∆Ii in the molecule; dij is the topological distance between the ith and the jth 
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atoms; A is the number of non-hydrogen atoms in the molecule. The exponent k is a parameter to modify the 
influence of distant or nearby atoms for particular studies. In DRAGON it is taken as k = 2.  
 

The last three descriptors are HATS5u, H6m and R1p+, there are a GETAWAY descriptors and 
correlates with the experimental Bp values of -5.40 (p=0.5), 74 and -54.4% respectively. The GETAWAY 
descriptors [25,26] have been proposed as chemical structure descriptors derived from a new representation 
of molecular structure, the molecular influence matrix. These descriptors, as based on spatial autocorrelation, 
encode information on molecular space. Moreover, they are independent of molecule alignment and, to some 
extent, account also for information on molecular size and shape as well as for specific atomic properties. 
 
HATS5u, H6m and R1p+ are calculated by Eq. (12), (13) and (14) respectively. 
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where A is the number of atoms, w is an atomic weighting scheme, dij is the topological distance, δ (k, 

dij) is a Dirac- delta function (δ=1 if dij=k, zero otherwise), rij is the interatomic distance. D is the molecule 
topological diameter that is the maximum topological distance in the molecule. The coefficient of R1p+ is 
positive, meaning that the hydrocarbons with larger values for this descriptor have larger Bp values. 
 

The following statistical parameters obtained for the external tests set verify the well-accepted 
conditions (8-a to 8-d), which reinforces the predictive capabilities of the present model. 
 

 
 

or      
 

0.85 < k =0.9965< 1.15   or   0.85 < k’=1.003 < 1.15 
 
Applicability Domain of the MLR Model 
 

Before a QSPR model is put into use for screening compounds, its applicability domain must be 
defined and predictions for only those compounds that fall in this domain can be considered as reliable. 
 

The AD of the MLR model was analyzed in the Williams plot (shown in figure.6). There are three X 
outliers (Compounds 1, 64 and 65) with leverage higher than the warning limit of 0.14 is a structurally 
influential compound, and one Y outlier with residual higher than ± 3 (Compound 66) in the training set. 

Deleting these observations could alter slightly 
2R  between the experimental Bp values and the selected 

descriptors to 99.75% (
2Q

= 99.71%) and decrease the standard error to 4.58, while utilization of a higer 
energy conformation geometry for this observation alter negatively the calculated model. 
 
Validation 
 

In order to estimate the predictive power of MLR, in this case we used two validation procedures. 
Firstly, using the leave-one-out procedure; a Q²LOO =99.70% and the bootstrap procedure a Q²BOOT =99.67%, 
reveal the high predictive ability of the model. Secondly the external validation procedure; by using a set of 40 
compounds which have not been explored for training set. The external predictive power is confirmed by a 
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high Q²ext value (Q²ext=99.70%) that reveals model applicability also to predict the boiling points of unknown 
series compounds. The plot of predicted versus experimental values for data set is shown in figure. 3(∆). 
 
Remains to be noted that there is a single Y (Compound 162) outlier with residual higher than ± 3  

 

 
 

Figure 6: Williams plot of the MLR model for the entire data set. 
 

CONCLUSION 
 

In this paper, the QSPR method was applied to the prediction of the boiling points of organic 

compounds. A five-parameter linear model was developed by hybrid GA/ MLR approach with 
2R of 99.80 and 

s of 4.67 for the training set. The selected descriptors express many factors influencing boiling points, to name: 
molecular size and shape, specific atomic properties. Several validation techniques, including leave-one-out 
cross-validation and bootstrap, randomization tests, and validation through the test set, illustrated the 
reliability of the proposed model. All of the descriptors can be directly calculated from the molecular structure 
of the compound, thus the proposed model is predictive and could be used to estimate the boiling points of 
hydrocarbons. In this case, the applicability domain will serve as a valuable tool to filter out “dissimilar” 
chemical structures. 
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