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ABSTRACT 

 
One of the tasks of the tillage is to ensure energy supply to soil reservoir in this form, the number and 

sequence that provide required its State spending less energy as possible. One way to solve this problem is to 
break the surface of the wedge for a few consecutive wedges with small increments and thereby obtain a 
curved surface. On this basis, the estimated scheme and mathematical dependences describing changes speed 
of soil formation and profile on the curved surface of the splitting wedge from its parameters and properties of 
soil. The analysis of the obtained relationships. 
Keywords: soil layer, wedge, working body, settlement scheme, curvilinear surface, curvature radius, angle of 
statement, friction coefficient. 
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INTRODUCTION 
 
It is known that all the existing working organs of soil-cultivating tools are geometrically shaped in the 

form of flat or curved wedges. The flat wedges include such working parts as ploughshare, knives, paws of 
plane cutters, harrow teeth, etc., and to curvilinear ones - spherical disks of borons, dumps of plows, hillocks, 
etc., as well as some racks of working bodies, for example, paws. 

 

The process of destruction of the soil layer is based on the continuous transfer of pressure from the 
working part and the creation of a stress-strain state on its surface [1, 2, 3, 4]. According to the theory of 
strength used in soil cultivation, the main stresses are tangential and normal. The predominance of one 
species over other stresses determines the nature of the deformation of the soil layer, for example, by shear 
or separation. In the theory of soil cultivation, a two-sided (flat) and three-sided wedges are taken to study the 
stress-strain state of the soil environment on the surface of the working organ. 

 
RESULTS AND DISCUSSIONS 

 
In the general case, the design model of the process of interaction of a flat wedge with a soil 

environment is shown in Figure 1. 
 

 
 

Figure 1: Calculation model of interaction flat wedge with soil 
 

It is believed that when the wedge moves from point D to point D0 by a distance Δ, the soil array 
moves from the ABCD position to the position A0B0C0D0. First, the massif with the momentum mV1 is pressed 
into the undeformed mass, and then the array with the momentum mV2is condensed. The collision stress Fτ at 
point D0is greater than at point D. As soon as the stress of the crushing exceeds the soil resistance of the shear, 
a shear plane AB (a crack develops) appears at the front of the wedge blade, directed at an angle ψ to the 
bottom of the furrow, and a prismatic soil array A0B0C0D0. Further, after its separation, the soil array slides 
over the surface of a flat wedge with a coefficient of friction f, without undergoing new deformations. The 
dimensions of the separated array depend on the physicomechanical properties of the soil, the thickness of 
the formation (depth of treatment) h and the angle α of setting the working face of the wedge to the 
horizontal (to the bottom of the furrow). In this case, the total elementary forces of the soil particles (arrays) 
acting on the part of the wedge are reduced to the resultant R, which depends on the normal reaction on the 
surface of the wedge N and is defined as R = N/cosφ, where φis the angle of external friction. 

 

Note that to slip the soil array along the working surface of the wedge, it is necessary to satisfy the 
condition ξ> φ, where ξ = π/2-α; φ is the angle of friction; α is the angle of installation (setting) of the working 
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face of the wedge to the horizontal (to the bottom of the furrow). In the case when ξ <φ, the particle moves 
along with the wedge in the wedge motion direction. 

 

In contrast to the generalized calculation model, it has been established by experimental studies that 
when the flat wedge interacts with the soil, the rate of formation of the soil form tends to infinity at some 
instant of time, and the inertial component of the reservoir resistance and the component associated with the 
change in the strain rate increase sharply. As a consequence, energy consumption for soil cultivation is 
increasing. At the same time, it is possible to reduce the rate of deformation of the soil layer by reducing the 
angle α of the wedge to the bottom of the furrow. However, with a decrease in the angle α (α1> α2> α3) at a 
constant treatment depth (h-const), the length l of a flat wedge, in accordance with the dependence l = h / sin 
(α), increases (l1<l2<l3) (Fig. 2 ). This, in turn, leads to an increase in the cost of overcoming the friction of the 
soil layer on the working surface of the wedge. Moreover, within the recommended angles α = 150 ... 350, the 
length l of a flat wedge can decrease approximately by 2 times. 

 

 
 

Figure 2: Dependence of the wedge length l on the angle of its setting α 
 

Thus, it is possible to resolve the existing contradiction if the wedge surface is divided into several 
successive wedges with a small increment of the angle corresponding to a small increment of the deformation 

Δ. Thus, according to Fig. 3, during the action of a flat wedge with an angle α1 on a soil medium of volume 
abcd, the formation deforms upon transition to a working surface with a volume of cdc1d1. Further, the soil 
layer, moving along the flat surface of the wedge, does not experience any significant effect from the wedge. 
Further, the effect of a wedge with a new angle α2 on the formation results in an intensification of the 
displacement of the wedge with a c2d2 face. Multiple sequential build-up of the initial wedge will result in the 
formation of a polyhedral surface abb1b2 ... bn with different angles αn. Finally, with a sufficiently small 

increment (Δα0), the surface of the wedge from polyhedral abb1b2 ... bn becomes curvilinear, which 
corresponds to the continuity of the process of soil deformation. 

 

To determine the parameters of the shape of the working element (for example, the paw joint), we 
consider the mathematical description of its curvilinear surface profile (Figure 4). The direction of the tangent 
changes as the point moves from M to M1 along the curve. To measure the rate of this change, we take 
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tangents at the ends of some arc and find the angle θ between them and divide this angle by the length ΔS of 
the arc MM1. Letting point M to point M1, we find the limit of the ratio: 
 


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




 S
lim

0S
 (1) 

 

 
 

Figure 3: Scheme of deformation soil layer by a concave wedge with varying angle αn 
 

The quantity  is called the curvature of the curve at a given point, and it is defined as the limit of the 
ratio of the angle of rotation of the tangent on an arc contracting to a given point, that is, to the length of this 

arc. The curvature  coincides with the coefficient k in the Frenet-Serre formulas [5]: 
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Thus, when measuring the rate of change in the direction of the tangent, it becomes possible to 

estimate the curvature , which shows how much the curve deviates in shape from the shape of the straight 
line. The greater the curvature, the stronger this deviation. The inflection point is characterized by the 

vanishing of the value of the second derivative
2

2

dX

Yd
, and at the same time the curvature, that is, the 

rectification point of the plane curve. The reciprocal of the curvature is the radius of curvature of the curve r: 
 

r
1



 (3) 

 

The sign of curvature coincides with the sign of the derivative 
2

2

dX

Yd
and determines the direction of 

the concavity of the curve in the direction of increasing ordinates. 
 

The unit radius of the vector )t(r of the point m with respect to some fixed point is a complex 

function of time )t(S)t(r  . From the differential geometry, formulas are known that establish the 

relationships between the unit vectors of the natural axes and the vector-function of the curve: 
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 (4) 

 
Using the definition of velocity and the Serre-Frenet formula [5], we obtain: 
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If the definition (4) is scalarly multiplied by unit vectors and the angle between them is  2/ , 

then the radius of curvature is characterized by the parameters V and : 
 

Vr

1 
 (6) 

 
When interacting with the working surface of the wedge, the soil particle acquires the velocity V and 

moves along the trajectory MM1 (Fig. 4), which is caused by a change in the interaction angle between the 
velocity vector of the working surface of the wedge and the velocity vector of the soil particle. The curved 
wedge acts more intensively on the soil environment. Moreover, the angle α is not constant but varies within 
certain limits. 

 

When the curvilinear wedge is applied to the soil with an angle α, the soil layer is deformed when 
going over to the working face (Figure 5). Further, moving along the face, the layer receives additional impact 
from the curvature of the wedge, which is given by the change in the angle α. Multiple successive increases in 
the wedge angle lead to the formation of elementary blocks that are located along the trajectory L. on the 
surface of the wedge. The deforming properties of the curved surface depend on the nature of the changes in 

the indicated angles α and . Moreover, the thickness of the formation before the wedge h is greater than on 
the wedge hk. With decreasing curvature of the wedge surface, the value of hk decreases. 

 

 
 

Figure 4: Scheme for analyzing the shape of the longitudinal profile of the wedge working surface 
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Figure 5: The calculation scheme of interaction curved wedge with soil 
 

Consider the material balance )0Vm(  , considering that a system of forces acting on an 

elementary layer of soil is applied to a wedge with a curved surface: 
 

0mpFGN 


,                                                          (7) 

 

N


 - normal reaction of soil formation on the wedge surface;  

G


 - gravitational force (G=mg); 

mpF


 - friction force (Fmp=fN). 

 

The projection of the acting forces on the OX and OY axes allows one to obtain: 

0Fmp)cos()sin(mg    (8) 

0)cos(mgN    (9) 

 

Then the material balance is: 

)cos(mgf)cos()sin(mgVm   (10) 

After a reduction by m, we have equations [5]: 

)cosfcos(singV   , (11) 

)cos()sin(gV
V 2




  (12) 

Dividing (11) by (12) we obtain: 
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Integrating (13), we have 
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After the transformation (14), taking into account that 
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С – integration constant. 
As a result, we get: 
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Considering, that=0andV=V0 obtainC = V0and formula(18)will 
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Having expressed the angle of contiguity  through the radius of curvature r and the contracting chord 
l, which corresponds to the length of the opener (Figure 4), we establish 
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Hence we find the adjacent angle: 
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Then finally get a relationship for determining the speed of movement of the soil layer over the 
opener with a curved surface: 
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Formula (21) shows the dependence of the velocity V of the movement of the soil formation along the 

curvilinear surface of the wedge on the friction coefficient f, the setting angle α, the length l, and the radius of 

curvature r of the wedge. 

 

To determine the profile of the surface of the working member of the paw coulter, we integrate the 

function (21) in time in the interval from 0 to t: 
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The final formula (22) determines the influence of the friction coefficient f, the setting angle α, the 

wedge length l, and the radius of curvature r on the changes in the profile S of the paw seed surface when the 

soil element moves along a curved surface. 

 

Graphical interpretations of the obtained dependences (21) and (22), taking into account the slip 

condition of the soil formation along the working surface of the wedge, are shown in Figures 6 and 7. Thus, in 

Figure 6, the dependence of the change in the velocity V of the soil movement along the curved surface of the 

wedge from the setting angle wedge α for different values of the coefficient of friction f taking into account 

the slip condition of the soil formation along the curved wedge. 
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Figure 6: Dependences of the change in the speed V of the motion of the soil element along the 

curved surface of the wedge from the angle of the wedge a, for different values of the coefficient of 

friction:1- f=0,4; 2 –f=0,5; 3- f=0,6. 

 Figure 7: Dependences of the change in the profile S of the surface of the paw opener when the soil element 

moves along the curved surface of the wedge from the angle of the wedge α for different curvature radiir:  1 

– r=10cm;  2 – r=25cm;  3 – 4 r= 40 cm 
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Figure 7 shows the dependence of the change in the profile S of the surface of the paw opening when 

the soil element moves along the curved surface from the angle of the wedge a for different curvature radius r. 
 

CONCLUSION 
 
From the data obtained it follows that, provided that the soil mass slides along the working surface of 

the wedge (ξ>φ) and the different values of the friction coefficient f and the radius of curvature r, the angle of 
the wedge α varies from 150 to 350. 
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