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ABSTRACT 

 
Anadurai et al. (2000) fitted the models of Verhulst (logistic growth), Gompertz and Richards to given 

growth data of Pseudomonas putida. From the three models tested, the logistic model fitted best. Each of the 
forementioned models corresponds to a specific exponent-pair of the five parameter Bertalanffy-
PütterBP(a, b) model class. We found that the sum of squared errors (SSE) of the model BP(2.81, 3.32) 
improved the SSE of the logistic model BP(1, 2) by the factor of five. Furthermore, assuming a constant 
biomass-substrat-yield, the best-fit BP model had a slightly better fit than the classical Monod model.  
Keywords: batch microbial growth, Bertalanffy-Pütter growth models, Monod model, Pseudomonas putida, 
simulated annealing 
 
 
 
 
 
 
 
Abbreviations: AIC, Akaike information criterion; SSE, sum of squared errors between the model curve and the data; BP-model, 
Bertalanffy-Pütter type growth model 
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INTRODUCTION 
 

Microbial growth is traditionally described by Monod’s (1949) kinetics with multiple applications in 
biotechnology (e.g. Steele et al., 1977, Kyriakopoulos et al., 2017). Recent literature identified also more 
elaborate alternatives to the Monod model (e.g. Tsipa et al., 2018, Wade et al., 2016). Mathematically, the 
Monod kinetics is a system (1) of differential equations that relates the growth rate of biomass concentration 
x(t) at time t to the rate-limiting substrate concentration s(t), using five positive model parameters, the 
maximum specific growth rate 𝜇𝑚𝑎𝑥 , the saturation constant k, the yield coefficient Y, and the initial 
conditions x(0) = x0, s(0) = s0.  
 

𝑥´(𝑡) =
𝜇𝑚𝑎𝑥∙𝑠(𝑡)

𝑘+𝑠(𝑡)
∙ 𝑥(𝑡) and 𝑠´(𝑡) = −𝑥´(𝑡)/𝑌     (1) 

 
As the saturation constant cannot be determined experimentally, it is estimated from solutions of (1) 

with the best fit to growth data (Shirsat et al., 2015; Liu, 2007). If there are no data about the substrate 
concentration, the model (1) is reformulated as a differential equation (2) for biomass concentration alone 

(Shuler & Kargi, 2002), using the five non-negative parameters , , ,  (related to the above parameters) and 
x0.  

 

𝑥´(𝑡)  =  
𝛼−𝛽∙𝑥(𝑡)

𝛾−𝛿∙𝑥(𝑡)
∙ 𝑥(𝑡)        (2) 

 
Further, various simpler models (fewer parameters) have been considered in literature to describe 

the growth of biomass and thereby approximate the Monod model. Examples are Verhulst (1838) logistic 
growth, Gompertz (1832) and Richards (1959) models (e.g. Annadurai et al., 2000; Arora et al., 2018; Kargi, 
2009). These models can be unified and generalized by the Bertalanffy-Pütter model (BP-model), which is 
defined by differential equation (3) of Pütter(1920). (For another generalization c.f. Tsoularis & Wallace, 2002.) 
It uses five parameters: the exponent-pair 0 ≤ a <b, constants p and q, and the initial concentration x(0) = 
x0 > 0. In general, its solution needs non-elementary functions (Marusic & Bajzer, 1993; Ohnishi et al., 2014). 
 

𝑥´(𝑡) = 𝑝 ∙ 𝑥(𝑡)𝑎 − 𝑞 ∙ 𝑥(𝑡)𝑏        (3) 
 

We interpret equation (3) as a definition of a model class, as each exponent-pair defines a different 
growth model BP(a, b) with three parameters (p, q and x0). Several models that have been used previously to 
describe growth are of this form, e.g. the Brody (1945) model of bounded exponential growth BP(0, 1), logistic 
growth BP(1, 2), the model BP(2/3, 1) of von Bertalanffy (1949), or the model BP(3/4, 1) of West et al. (2001). 
Also, the Gompertz model fits into this scheme: It is the limit case (with a different differential equation), 
where b converges to a = 1 from above (Marusic & Bajzer, 1993). Equation (3) also includes several classes of 
models, such as the Richards model (a = 1 with b variable) and the generalized Bertalanffy model (b = 1 with a 
variable; in economy this is theSolow-Swan growth model). In animal growth, the latter model classes were 
considered, as no single exponent-pair could provide a satisfactory description of growth (Pauly, 1981; White, 
2010).  

 

 
 
Figure 1. Optimization of model 3: grid points (yellow), optimal exponent-pair (black), Bertalanffy, Gompertz 

and Verhulst (logistic) exponent-pairs (blue), near-optimal exponent-pairs (red). 
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When compared to the range of models considered for this paper (yellow area), these named models 
and model-classes appear as rather exceptional (Figure 1). 
 

We therefore ask, by how much the fit to the data could be improved by using the BP-class (3) of 
models instead of the above special cases. In previous papers, we have asked this question for modeling the 
growth of tumor (Kühleitner et al., 2019a), wild-caught fish (Renner-Martin et al., 2018), chicken (Kühleitner et 
al., 2019b), or dinosaurs (Brunner et al., 2019), and we found substantial improvements in the fit by using the 
BP-model class. Here we use data from Annadurai et al. (2000) about the growth of Pseudomonas putida and 
determine the best fits to the general BP-class (3) and also to the Monod model (2). Pseudonomas strains have 
multiple applications in biotechnology, e.g. degradation of water pollutants (García-Uitzet al., 2016), whence 
there is some interest in determining their growth pattern.  

 
MATERIALS AND METHODS 

 
Software 
 

The data were processed in Mathematica 11.3 of Wolfram Research® and the output of optimization 
was exported to a spreadsheet that is provided as a supporting material.  
 
Data 
 

The paper uses the data from Table 1 of Annadurai et al. (2000). It recorded N= 27 hourly 
measurements (time t = 1, 2, …, 27) of OD600 (optical density at a wavelength of 600 nm) for a batch culture of 
Pseudomonas putida (Trevisan, 1889) subsequent to the lag-phase; see the source paper for a detailed 
documentation of the experiment. 

 
We decided to use these data, as they display a sigmoidal shape and as the number of time points is 

exceptionally large, whence it becomes easier to distinguish good and bad fitting models. The data are 
relatively old, but we do not expect that more recent data would display a fundamentally different growth 
pattern. The source did not record statistical information (e.g. error-bars) and such information is not needed 
for this paper.  

 
Data-fitting 
 

We used the least-squares method; this means that the hypothesis of a normal distribution of errors 
was assumed. For equation (3) this led to an optimization problem that previously was almost intractable. 
Recently, in Renner-Martin et al. (2018) we succeeded in developing an advanced optimization method, based 
on simulated annealing (Vidal, 1993). The optimal exponent-pairs were searched on a grid with an accuracy of 
0.01, and for each grid point the other parameters p, q, x0 were found by means of simulated annealing. If the 
best-fit exponents were on the boundary of the search grid, more grid-points were considered to guarantee 
optimality. Furthermore, the paper visualizes the near-optimal exponents, whose best-fit SSE did not exceed 
the least value of SSE by 5% or more. For the Monod-model (2) simulated annealing was applied to find all five 
optimal parameters.  

 
Statistical analysis 
 

As we consider one dataset for which we compared the fit by different models, we use the Akaike 
(1974) information criterion as tool from statistics. If SSE is the sum of squared errors, N is the number of data 
and K the number of model parameters, then equation (4) defines AIC (Burnham & Anderson, 2002; 
Motulsky & Christopoulos, 2003).  
 

𝐴𝐼𝐶 = 𝑁ln (
𝑆𝑆𝐸

𝑁
) + 2 ∙ 𝐾        (4) 

 
For example, the Monod and Bertalanffy-Pütter models have the same number K = 6 of parameters 

(the five explicit parameters plus SSE as an additional parameter), while for Verhulst logistic growth K = 4. For 
our data, N = 27.  
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The model with the least AICis best supported by the data (it should be selected). This is quantified by 
the following probability (Akaike weight): Based on AIC, equation (5) computes the probability that a model 
with AIC is true, when compared to the the model with least AICmin: 

 

𝑝𝑟𝑜𝑏 =
𝑒−∆/2

1+𝑒−∆/2, where = AIC – AICmin> 0     (5) 

 
RESULTS 

 
For the optimization of the BP-model, Figure 1 plots the grid points (almost 100,000 grid points were 

searched), the optimal exponent-pair, and the region of near-optimal exponent-pairs. For its optimal 
exponent-pair a = 2.81, b = 3.32 the least SSE was 0.00219 (other parameters: p = 1.682, q = 2.084, x0 =0.212). 
As this exponent-pair was an inner point of the region of near-optimal exponent-pairs, this confirmed local 
optimality.  

 
Figure 2 plots the data and the best-fitting solutions of (3) and (2), respectively.  

 

 
 

Figure 2. Data (black dots) and the best-fitting model curves for equations (3) and (2) in green and blue, 
respectively. 

 
The BP(2.81, 3.32)-model achieved the best fit. For the near-optimal exponent-pairs, the best-fit 

model curves had barely a visible difference to the optimal model curve. The Monod model had a SSEof 

0.00295 (other parameters:  = 0.231,  =0.357,  = 3.381,  = 4.931, x0 = 0.199). This SSE was by ca. 35% 
higher than for the BP-model. Further, for the logistic model SSE was 0.01225 (a = 1, b = 2, p = 0.13, q= 0.171, 
x0 = 0.178); this was about 5.6 times the SSE of the best-fit BP-model. 

 
The AIC-values for the Verhulst, Monod and Bertalanffy-Pütter models were –199.8, 

–234.3, and –242.3, respectively. Thus, the Bertalanffy-Pütter model had the least AIC. When compared to this 
model, for Verhulst logistic growth and for the Monod kinetics the probabilities were 0% and 1.8%, 
respectively, that these models were true for the considered data. 
 

DISCUSSION 
 

For the present data the logistic model had the best fit amongst the models considered by Annadurai 
et al. (2000). As the logistic model is a special case of the BP-model (3) with more parameters, from an 
optimization of (3) we expected a slight improvement of this fit. Instead, we arrived at an exponent-pair that 
was far remote from the exponent-pairs of the logistic model and other models used in traditional growth 
studies; using this exponent-pair resulted in a substantial improvement of the fit.  
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As the Monod model is the traditional model for the growth of biomass in a batch, we expected 
another slight improvement for this model. Instead, whereas on a visual inspection the fit by the Monod 
model appeared to be satisfactory, the best-fit BP model had a significantly better fit than the Monod model, 
when the AIC criterion and its probability to be true were used. The reason for strong support for the BP-
model was the large number of data points. A biological reason for the good fit of BP-models may be the 
tendency of Pseudonomas putida to form clusters. For clusters the biophysical reasoning in support of model 
(3) might apply, according to which the flow of substrates through the surface area of the cluster would be the 
major barrier to growth (Pauly, 1981; von Bertalanffy 1957). 
 

Mathematically, the better fit of the BP-model was achieved by a different pattern of growth (e.g, no 
plateau phase) that deviated from the traditional picture for the Monod kinetics of growth in different phases. 
In order to visualize this difference between the models, Figure 3 compares the specific growth rates 𝜇(𝑡) =
𝑥´(𝑡) ⁄ 𝑥(𝑡).  

 

 
 

Figure 3. Specific growth rates for the best fitting growth curves for equations (3) and (2) in green and blue, 
respectively. 

 
For the BP-model there was a long acceleration phase till the maximum specific growth rate 𝜇 =

0.073 (1/hrs) was reached after 12.2 hours. It was followed by a deceleration phase, but a plateau phase or a 
stationary phase could not be discerned. For the Monod model, after a short acceleration phase the maximum 
specific growth rate of 𝜇 = 0.063(1/hrs) was reached, followed by a plateau phase (exponential growth), a 
phase of deceleration, and the stationary phase (no growth).  

 
Finally, we note that the best-fit parameters depend strongly on the method of calibration. For 

illustration, we repeated all computations using the lognormal distribution (meaning a higher variance for 
higher concentrations); this was equivalent to identifying the least squares fit of the logarithms of the model 
curves to the logarithms of the data. The best-fit BP-model (3) had the parameters a = 3.09, b = 3.25, p = 

6.516, q= 6.974, x0 = 0.214, and the best-fit Monod model (2) had the parameters  = 0.216,  = 0.335,  = 

3.404,  = 5.139, x0 = 0.205. Again, the BP-model had a better fit and also its AIC was least. 
 
We conclude that the BP-model is a viable alternative for describing the growth of biomass. Where 

the BP-model has a better fit than the other named models considered in bioprocess engineering literature, 
this model may enable a more economic control of biotechnical processes. 
 
Supporting information 
 

We provide an additional file that contains a table of the used data and the optimization results 
(computation of SSEopt(a, b) for certain grid points):  
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S1 File.xlsx. Sheet 1: table of the data (time in hours, optical density at wavelength 600nm), Sheet 2: table of 
the optimization results (exponent a, exponent b, and for them the best-fit parameters initial value of OD600, 
p, q, and SSE) 
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